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A new family of Bayesian network classifiers is introduced and demonstrated to outper-

form existing classifiers. Of particular interest is use of these classifiers for interpretation

of cardiac SPECT images. High classification performance on databases from a variety of

other domains is also demonstrated.

Cardiac SPECT (Single Photon Emission Computed Tomography) is a diagnostic tech-

nique used by physicians for assessing the perfusion of the heart’s left ventricle. A physi-

cian reaches the diagnosis by comparing SPECT images taken from a patient at rest and

at maximum stress. Interpretation of images by strictly visual techniques is burdened with

error and inconsistency. Thus, assistance in quantifying and automating the diagnosis is

sought.

An important issue in automating the diagnosis is classification of left ventricle perfu-

sion into a number of predetermined categories. The goal of this dissertation is to investi-
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gate the use of Bayesian methods for construction of classifiers that would assist in inter-

pretation of cardiac SPECT images. These images and their descriptions are characterized

by a significant amount of uncertainty. Bayesian methods build models by approximating

the probability distribution of the variables in the problem domain; they are naturally well

suited to deal with uncertainty.

This research consisted of three main parts. (1) Data warehousing – assembling car-

diac SPECT images and patient records into an easily accessible database and creating

software manipulation of SPECT images. (2) Three-dimensional image processing – im-

plementation of custom algorithms for extraction of features from SPECT images. (3)

Learning Bayesian network classifiers – research of novel machine learning algorithms

that use Bayesian techniques for creation of robust classifiers.

The main contribution of this work is creation of a new family of Bayesian network

classifier – their high performance classifying left ventricular perfusion is demonstrated.

Additionally, it is shown that they outperform existing Bayesian network classifiers and

machine learning algorithm C4.5 using data from University of California at Irvine Repos-

itory of Machine Learning Databases. Among other contributions is a method for auto-

mated extraction of features from cardiac SPECT images based on the creation of models

of normal left ventricles, software for visualization of cardiac SPECT images, automated

feature extraction, and creation of Bayesian network classifiers.
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Chapter 1

Introduction

Cardiac SPECT (Single Photon Emission Computed Tomography) is a diagnostic tech-

nique used by physicians for assessing the perfusion of the heart’s left ventricle. A physi-

cian reaches the diagnosis by comparing SPECT images taken from a patient at rest and

at maximum stress. It has been shown that interpretation of images by strictly visual tech-

niques is burdened with error and inconsistency. For that reason, assistance in quantifying

and automating the diagnosis has been sought. One of the issues in automating the diag-

nosis is classification of left ventricle perfusion into a number of predetermined categories.

The goal of this dissertation is to investigate the use of Bayesian methods for construction

of classifiers that would assist in interpretation of cardiac SPECT images. These images,

and their descriptions, are characterized by a significant amount of uncertainty. Bayesian

methods build models by approximating the probability distribution of the variables in the

problem domain; they are naturally well suited to deal with uncertainty.

This dissertation research consists of three main parts:

Data warehousing – assembling cardiac SPECT images and related patient records into

an easily accessible database and creating software for reading the SPECT images

stored in a proprietary format. Cardiac SPECT images have been collected from

Medical College of Ohio and organized together with the relevant patient’s record
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into a rational database. The objective was to enable easy access to data through use

of SQL queries. Collected data were cleaned and preprocessed for further use by

image processing and classification.

Three-dimensional image processing– design and implementation of algorithms for ex-

traction of features from SPECT images. The SPECT images cannot be directly used

for classification. A typical SPECT image consists of about 133,072 voxels, each

having up to 65,536 possible gray level values. Three-dimensional image processing

is used to analyze information present in a SPECT image and express it by a small

number of features representing information most relevant to the diagnosis of left

ventricle perfusion. A model of a normal left ventricle has been created and used for

creation of features extraction algorithms.

Learning Bayesian network classifiers– research of novel machine learning algorithms

that use Bayesian techniques for creation of robust classifiers. A Bayesian network

is a formalism for representing a joint distribution of a set of random variables. A

Bayesian network can be used for classification by identifying one of the nodes with

the class variable and other nodes with attribute variables. Classification is performed

by computing marginal probability distribution of the class variable. Established

methods for learning Bayesian networks are concerned with good approximation

of the joint probability distribution. Good criteria for constructing a network that

accurately represents the probability distribution of the analyzed problem will not

necessarily lead to a good classifier. Our research was concerned with the creation of

Bayesian network learning methods that are specifically designed for the creation of

classifiers. A new family of Bayesian network classifier has been created and used

for classification of left ventricular perfusion.
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1.1 Contributions

The following are the main contributions of this dissertation:

New family of Bayesian network classifiersA new approach to synthesis of Bayesian

network search algorithms specifically designed for creation of classifiers is intro-

duced. We present five new search algorithms created using the new synthesis. We

also show that naı̈ve Bayes (Duda and Hart, 1973) and TAN classifiers (Friedman,

Geiger, and Goldszmidt, 1997) are special cases of the synthesis. We demonstrate

that classifiers based on the new search algorithms outperform existing ones includ-

ing tree induction algorithm C4.5 (Quinlan, 1993).

Automated extraction of features from cardiac SPECT imagesA rigid model of a nor-

mal left ventricle is created and used for automated registration of SPECT images.

Features are extracted from SPECT images mimicking process performed by a physi-

cian.

Cardiac SPECT database4,828 patient records, 8,142 SPECT images and related files,

collected for 728 patients, were organized into a coherent database.

Software New software for browsing the cardiac SPECT database, visualization of 3D

SPECT images, automated feature extraction, and learning with the new family of

Bayesian network classifiers has been created.

1.2 Organization

Chapter 2 briefly describes the function of the human heart, most common heart diseases

and a technique for diagnosing left ventricular perfusion – cardiac SPECT imaging. The

knowledge discovery process and the creation of the SPECT image database is the content

of Chapter 3. Preparation of data for classification – creation of models of normal left
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ventricle and the extraction of features from cardiac SPECT images is presented in Chap-

ter 4. Chapter 5 contains an introduction to Bayesian networks. Issues specific to Bayesian

network classifiers are introduced in Chapter 6. The main contribution of this work – a

new family of Bayesian network classifiers is presented in Chapter 7. Experimental results

demonstrating classification of the left ventricular perfusion and benchmarking of the new

classifiers against existing ones are described in Chapter 8. Software developed to make

this dissertation research possible is described in Appendices A and B.



Chapter 2

Cardiac SPECT Imaging

2.1 Human Heart

The heart is one of the most important organs in the human body, a central part of the cir-

culatory system. The heart is a dual pump circulating blood through two separate systems,

each consisting of anatrium and aventricle(Fig. 2.1). Blood from the body returns to the

right atrium through two large veins, thesuperiorandinferior venae cavae; in addition the

blood that has supplied the heart muscle is drained directly into the right atrium through

the coronary sinus. Return of venous blood to the right atrium takes place during the entire

heart cycle of contraction and relaxation, and to the right ventricle only during the relax-

ation part of the cycle, calleddiastole. When both right heart cavities constitute a common

chamber; near the end of diastole, contraction of the right atrium completes the filling of

the right ventricle with blood (Fig. 2.2). Rhythmic contractions of the right ventricle expel

the blood through the pulmonary arteries into the capillaries of the lung where the blood

receives oxygen. The lung capillaries then empty into the pulmonary veins, which in turn,

empty into the left atrium. Pulmonary venous return to the left atrium and left ventricle

proceeds simultaneously in the same manner as the venous return to the right heart cavi-

ties. Contraction of the left ventricle rhythmically propels the blood into the aorta and from

5
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Figure 2.1:Human heart (Encarta, 1999).

there to all arteries of the body, including the coronary arteries which supply the heart mus-

cle. The blood forced from the ventricles duringsystole, or contraction, is prevented from

returning during diastole by valves at the openings of the aortic and pulmonary arteries.

Disorders of the heart kill more Americans than any other disease. They can arise

from congenital defects, infection, narrowing of the coronary arteries, high blood pressure,

or disturbances of heart rhythm. The major form of heart disease in Western countries is

atherosclerosis. In this condition, fatty deposits calledplaque, composed of cholesterol and

fats, build up on the inner wall of the coronary arteries. Gradual narrowing of the arteries

throughout life restricts the blood flow to the heart muscles. Symptoms of this restricted

blood flow can include shortness of breath, especially during exercise, and a tightening pain

in the chest calledangina pectoris. The plaque may become large enough to completely

obstruct the coronary artery, causing a sudden decrease in oxygen supply to the heart. Ob-

struction can also occur when part of the plaque breaks away and lodges farther along in the

artery. These events are the major causes ofheart attack, or myocardial infarction, which
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(a) Relaxation – diastole.

(b) Contraction – systole.

Figure 2.2:Heart’s cycle (Encarta, 1999).

is often fatal. Persons who survive a heart attack must undergo extensive rehabilitation and

risk a recurrence. Many persons having severe angina because of atherosclerotic disease

can be treated with drugs, that enable the heart to work more efficiently. Those who do not

obtain relief with pharmacologic means can often be treated by surgery.

The main interest of this narrative is automation of a technique for delineation of areas

of reduced blood flow in the heart calledcardiac SPECT imaging. This technique visualizes

the flow of a radioactive isotope of the elementthallium into heart muscle. A computerized
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camera records the extent of thallium penetration during the systole-diastole cycle of the

heart, showing areas of reduced blood perfusion and tissue damage.

2.2 Cardiac SPECT Imaging

Cardiac single photon emission computed tomography (SPECT) provides a clinician with

a set of three-dimensional images to visualize distribution of radioactive counts within

the myocardium (the middle layer of the heart wall; heart muscle) and surrounding struc-

tures (Cullom, 1994). Images represent radioactive count densities within the heart muscle

which are proportional to muscle perfusion, in particular of the left ventricle (LV), which

is normally thicker than other cardiac structures. Two studies are performed after a patient

is injected with a tracer, one at rest (rest image) and one after injection during maximal

stress (stress image). The studies are represented by two, 3-D density images. Clinicians

compare the two images in order to detect abnormalities in the distribution of blood flow

within the left ventricular myocardium.

Visualization of the SPECT images is complicated by the fact that three-dimensional

density images cannot be directly presented using contemporary display devices that pro-

duce two-dimensional pictures; some kind of transformation has to be performed. This

transformation introduces a reduction of information. There are two practical alterna-

tives: two-dimensional density images or three-dimensional surface renderings (Garcia,

Ezquerra, DePuey, et al., 1986). The first preserves most of the intensity information,

but three-dimensional relations are only implicit. The second provides explicit three-

dimensional information explicit in which density is represented indirectly through the

shape of the 3-D surface and/or its color (Faber, Akers, Peshock, and Corbett, 1991; Faber,

Cooke, Peifer, et al., 1995).

Typically, the LV is visualized as sets of two-dimensional intensity slices. When sliced

perpendicular to the long axis of the left ventricle, the view is termedshort axis. Slices
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(a) Short axis view.

(b) Horizontal long axis view.

(c) Vertical long axis view.

Figure 2.3:2D slices of 3D SPECT images.

parallel to the long axis of the LV are calledvertical long axis, andhorizontal long axis

views (Fig. 2.3). Three-dimensional relations are only implicit in the views; it is left to the

interpreting physician to mentally reconstruct them as a 3-D object.

Another family of 2-D visualization methods is based on projections in non-Cartesian

coordinate systems. The three-dimensional left ventricle isunwrappedon a two-dimensional

plane by radial projection into spherical coordinates (Goris, Boudier, and Briandet, 1987),

or combination of spherical and cylindrical coordinates (Van Train, Garcia, Cooke, and

Areeda, 1994). They are generally referred to asbull’s-eyemethods since they produce

pairs of round images (rest and stress), see Fig. 2.4.

A number of 3-D surface rendering methods exists. They are frequently used in asso-

ciation withgated blood-pool SPECT(Corbett, 1994) to produce motion sequences of the

left ventricle function. This is a very intensely researched area; however, in this narrative
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Rest Stress

Figure 2.4:Bull’s-eye images of the left ventricle.

only static SPECT images are addressed.

A number of techniques have been developed to aid in classification of the images; most

of them are concerned with visualization. However, it has been shown that interpretation

of images by strictly visual techniques is fraught with error and inconsistency (Cuaron,

Acero, Cardenas, et al., 1980). For this reason, assistance in diagnosis has been sought

through the use of computer-derived image display and quantitation. Such quantitation

has demonstrably decreased the variability in image interpretation (Francisco, Collins, Go,

et al., 1982).

One of the few examples of automatic interpretation of SPECT images is the PERFEX

expert system (Ezquerra, Mullick, Cooke, Garcia, and Krawczynska, 1992). This system

infers the extent and severity of coronary artery disease from the perfusion distribution.



Chapter 3

Knowledge Discovery in the Cardiac

SPECT Imaging Database

3.1 Knowledge Discovery in Databases

The overall problem addressed in this narrative, “Bayesian Learning for Cardiac SPECT

Image Interpretation”, is an example of the process known asKnowledge Discovery in

Databasesor KDD. At an abstract level, the KDD field is concerned with the develop-

ment of methods and techniques for making sense of data (Fayyad, Piatetsky-Shapiro,

and Smyth, 1996). The KDD process consists of the following steps (Cios, Teresinska,

Konieczna, Potocka, and Sharma, 2000; Cios, Pedrycz, and Swiniarski, 1998):

1. Understanding the problem domain

• determination of objectives

• assessment of the current situation

• determination of data mining objectives, and

• preparation of the project plan

2. Understanding the data

11
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• collection of initial data

• description of the data

• initial exploration of the data, and

• verification of the quality of the data

3. Preparation of the data

• data selection

• data cleaning

• constructing and merging the data, and

• reformatting of the data

4. Data mining

• selection of several data mining methods

• building the model, and

• model assessment

5. Evaluation of the discovered knowledge

• assessment of the results versus the objectives

• keeping the approved models

• reviewing the entire knowledge discovery process, and

• determining actions to be taken based on the achieved results

6. Using the discovered knowledge

• implementation and monitoring plans

• generation of a final report, and

• overview of the entire project for future use and improvements
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In our previous work, (Sacha, Cios, and Goodenday, 2000), we discussed in detail the

relation of these steps to the problem of automating cardiac SPECT diagnosis. The work

presented here is concentrated on particular aspects of the KDD process:

• creation of the database of cardiac SPECT data and 3D SPECT images, that can be

considered a step partially preceding the KDD process. This discussed later in the

chapter.

• data preparation, and in particular extraction of features from 3D cardiac SPECT

images. This is discussed in detail in Chapter 4.

• creation of new data mining algorithms that are capable of efficiently dealing with a

high level of uncertainty present in the data. This the subject of Chapter 7.

• data mining step: application of newly created and existing algorithms for building

models of the cardiac SPECT data including diagnosis of left ventricular perfusion.

Data mining step is covered in Chapter 8.

Before we can apply algorithms for learning Bayesian network classifiers, the data

mining step, a number of crucial training-data preparation steps need to be completed. Data

preparation, data selection, data cleaning, incorporation of additional prior knowledge and

proper interpretation of results of data mining are essential to ensure that useful knowledge

will be derived from the data. KDD is a highly iterative process, many of the tasks may be

performed in a different order, and it is often necessary to repeatedly backtrack to previous

tasks and repeat certain actions (Chapman, Clinton, Khobaza, Reinartz, and Wirth, 1999).

A prerequisite to starting a practical KDD process isdata warehousing. Data warehous-

ing refers to a number of activities involved in collection and cleaning of data to make them

available for online analysis and decision support. The objective is to organize the available

data into a coherent database system and provide well-defined methods for efficient access

to the data. The software we created for this purpose is described in Appendix A. The re-
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mainder of this chapter describes the original data obtained from MCO, data warehousing

effort, and some of the data selection issues.

3.2 The Original Data

The data collection process was initiated at the Medical College of Ohio (MCO) in 1992.

Data were recorded first on paper worksheets then entered manually into an MS Excel

spreadsheet. Each row corresponds to a single patient visit – a SPECT procedure. About

184 parameters are recorded. Data include personal patient information such as age, sex,

height; information about the procedure, and the nuclear cardiologist’s interpretation of the

SPECT images (by regions of interest), and perfusion classification (i.e. diagnosis). For the

purpose of this work 4,828 records have been obtained from MCO over a period of time.

SPECT images are stored in a proprietary format, without database organization. Archiv-

ing of images has not been systematic due to significant storage requirements. Earliest

available SPECT images date back only to 1996. We have obtained 8,142 SPECT image

files from MCO. Typically there are six three-dimensional images and a number of auxil-

iary files per case. After cleaning, it corresponded to about 728 cases. Each set was stored

in a separate directory, the name of which was a combination of patient’s hospital number

and the date of study. Images and auxiliary data were stored in a proprietary binary format.

Descriptions of image files and their format was not provided. The following information

was typically contained in each directory:

• Patient identification number, name, and visit date.

• Row data for rest and stress study

• 3-D images corresponding to short, vertical long, and horizontal long axis views of

the heart; for rest and for stress study.

We determined the format of image files by reverse engineering. Image files were
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spread between different computer hard drives and archive media. Not all directories con-

tained complete data sets. Combined image data sets occupy currently over 3GB of disk

space. Due to cost and licensing issues software for manipulation and visualization of

SPECT images was not available; we wrote it from scratch.

3.3 Data Warehousing

The initial effort was data warehousing. Data contained in the spreadsheet have been con-

verted to a relational database. The proprietary SPECT image file format had been reverse-

engineered to the level that allowed the most critical information to be extracted - the ac-

tual three-dimensional images and patient identification information (hospital number and

SPECT date) stored in the header. Software for automatic indexing of images, using patient

identification information, was also created. Image indexes were stored in the database ta-

ble. Images were stored outside of the database within a predetermined directory structure.

The database design objective was simplicity of maintenance and ability to add easily new

patient records and images as they become available. Software for browsing patient records

with simultaneous display of available images in several modes was written. The database

also stores data generated by various data mining activities, such as information about gen-

erated models of a normal ventricle, and features extracted from the 3D SPECT images.

This way an SQL query can be directly used to generate variants of data sets needed for the

automation of diagnosis, e.g., learning Bayesian network classifiers.

3.4 Data Selection – Verification of the Data Quality

We have semi-manually inspected the original data to eliminate errors, e.g. typos. The

intention was not to modify the data unless the correction was straightforward. Rather,

where possible, we constructed SQL queries to filter undesired records.
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Table 3.1:Cases with complete sets of SPECT images and complete diagnosis data.

Male Female Total
No  ART with  ART Total No  ART with  ART Total No  ART With  ART Total

NL 23 19 42 36 36 72 59 55 114
IS 21 6 27 17 4 21 38 10 48

INF 41 4 45 18 4 22 59 8 67
IS-IN 52 2 54 9 2 11 61 4 65
EQ 3 0 3 1 0 1 4 0 4
REV 0 1 1 1 1 2 1 2 3
LVD 0 0 0 2 0 2 2 0 2

140 32 172 84 47 131 224 79 303

IS,  IS-IN 1 0 1 0 0 0 1 0 1
IS,  REV 2 1 3 1 0 1 3 1 4
IS,  LVD 1 0 1 0 1 1 1 1 2

IS-IN,  LVD 7 0 7 0 0 0 7 0 7
INF, IS 11 0 11 1 0 1 12 0 12

INF, IS-IN 2 0 2 0 0 0 2 0 2
INF, REV 3 1 4 0 0 0 3 1 4
INF,  LVD 10 0 10 2 0 2 12 0 12

INF,LVD,REV 1 0 1 0 0 0 1 0 1
LVD,  REV 1 0 1 0 0 0 1 0 1

39 2 41 4 1 5 43 3 46

total 179 34 213 88 48 136 267 82 349

The numbers of records available were counted to estimate the statistical validity of

expected results; e.g., if a sufficient number of examples exists for each learning class.

Table 3.1 shows number of cases available in the latest version of the database for each

of the left ventricle perfusion classifications (NL – normal,IS – ischemia,INF – infarct,

IS-IN – ischemia and infarct,EQ – equivocal,REV – reversible redistribution,LVD – left

ventricle dysfunction,ART – artifact). The top of the table corresponds to records with a

single classification code, the bottom to records that contain more than one classification

code.

By matching image sets to database records some data errors have been found. Most

of these errors were resolved as typographical, but some of the images remained with-

out matching patient records. They were eliminated from the analysis. Next, image sets

were checked for completeness, e.g. stress study missing, and for quality of the individual

images, mostly related to sufficient contrast (photon count).



Chapter 4

Extraction of Features from Cardiac

SPECT Images

4.1 Cardiologist’s Interpretation Process

Each diagnostic patient study contains two, three-dimensional SPECT cardiac image sets

of the left ventricle (one for rest and one for stress study). Comparing the two image sets

allows the interpreting physician to decide on diagnoses, such as ischemia, infarct or arti-

fact. Evaluation of the images is a highly subjective process with potential for substantial

variability (Cuaron et al., 1980). To analyze the images, we followed a procedure orig-

inally described by in (Cios, Goodenday, Shah, and Serpen, 1996). The raw image data

taken from multiple planar views are processed by filtered back-projection to create a 3D

image. These three-dimensional images are displayed as three sets of two-dimensional im-

ages corresponding to theshort axis view, horizontal long axis view, andvertical long

axis view.

From these two-dimensional views, the interpreting physician may select five slices to

represent the final report, see Fig. 4.1. From the short axis view, one slice is taken near

the heart’s apex, one at the mid-of the ventricle, and one near the heart’s base. With this

17
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Figure 4.1:Twenty two regions of interest within a left ventricle (22 ROIs). The first

three images correspond to a short axis view slices, the last two to horizontal

long axis view and vertical long axis view, respectively.

technique, for each of the horizontal and vertical axis views, a single slice is selected cor-

responding to the center of the LV cavity. Each of these five images is subdivided into a

number of regions of interest, from four to five, along the walls of the LV, for a total of

22 regions. The appearance of the LV and maximum count in each of the regions is eval-

uated. Corresponding region of interest (ROI) locations on the stress and rest images are

compared. Perfusion in each of the regions is classified into one of seven defect categories:

normal, reversible, partially reversible , defect, defect showing reverse redistribution,

equivocal, or artifact . The physician’s impression of overall LV perfusion, or the final

SPECT image analysis result, is concluded from the results of analysis in each of the ROIs.

From the analysis, the interpreting physician categorizes a study as showing one or more of

eight possible conditions:normal, ischemia, infarct and ischemia, infarct , reverse re-

distribution , equivocal, artifact , or LV dysfunction , see Fig. 4.2. Some of the perfusion

categories may coexist, for example normal and artifact, reverse redistribution and infarct,

etc.

The most fundamental operation performed by the interpreter during analysis of SPECT
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Figure 4.2:Overall classification of left ventricle perfusion based on partial classifica-

tions.

images is comparison of the case at hand to a mental image of a normal LV. The first task is

to establish the location of the ROIs within the current SPECT image. This process is com-

plicated by two factors that create a major challenge for any algorithmic implementation.

Both of these factors modify the apparent shape of the analyzed LV in the SPECT image.

They are defined bellow.

Actual LV detects Changes in perfusion of the LV are manifested as changes in the bright-

ness (radioactive counts) of the SPECT image. When perfusion is reduced, the counts

are low, and, in effect, parts of the LV may not even be apparent in the image due to

extremely poor perfusion. The interpreting physician deals with this loss of counts

by mentally “reconstructing” the missing contour of the image based on knowledge

of heart anatomy and previous experience with cardiac SPECT imaging. However,

this is a major challenge for computer algorithms.

Artifacts The most common artifact for Thallium 201 imaging is decreased count, usually

from attenuation by breast tissue in females, or by the diaphragm in males. Artifacts

may complicate localization of the 22 ROIs. Also, even after the analysis regions

are determined correctly, presence of artifact may lead to false diagnosis since the

decreased count may be erroneously taken for real perfusion defects.
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Once the predefined ROIs are established, differences between rest and stress images in

each location are analyzed, and counts within each region are compared to that of a normal

model. The overall impression of myocardial perfusion is directly concluded from the

results of this analysis from each of the regions.

In this work, a combination of computer vision and machine learning is used to mimic

the diagnostic process performed by an interpreting physician. Before a machine learning

algorithm can be used, a set of features needs to be extracted from the three-dimensional

images for each case study. The most natural approach is to extract a single feature corre-

sponding to each region of interest in both rest and stress images (see Fig. 4.1), as it was

originally done in (Cios et al., 1996). Each feature can be represented by a single number,

e.g., maximum count, mean count, median count, etc. Thus we have a set of 44 attributes

for each patient’s case that can be used to classify LV perfusion. Another approach is to

perform local classification first, in each of the 22 regions using information from rest and

stress images, and then use these 22 intermediate regional classifications to classify the

overall LV perfusion. Results for both of these approaches will be presented in Chapter 8.

It is difficult to automatically perform correct and repeatable determination of the ROIs

directly from the 3D images due to artifacts, actual LV defects, and anatomical differences

between patients. In order to do that, we use a model of a normal LV. Location of the

regions is a part of the model description. The model plays a role analogous to the in-

terpreter’s mental image of a normal LV. The first step in the feature extraction process

is registration - matching the image at hand to the model using translation, rotation, and

scaling operations. The image may be matched with a number of models. The model with

highest correlation ratio is selected and used to locate slices and regions of interest in the

image. Regional perfusion is determined based on the count/intensity of LV walls within

the region. Even when the image and a model are correctly registered, the walls of the

model and case under investigation may not completely overlap, thus compromising qual-

ity of the feature extraction process. Correct determination of myocardium wall location is
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Figure 4.3:Three-dimensional rendering of a normal left ventricle model.

difficult. The approach we use, besides direct reference to the normal LV model, is similar

to the radial search as used in SPECT bull’s-eye methods (Goris et al., 1987; Van Train

et al., 1994). The model is used to determine the center of the left ventricular cavity. A

search is performed in a desired direction, starting from the center of the cavity; the max-

imum intensity value along the search direction is recorded. This is based on the premise

that counts within the LV wall are higher than in surrounding areas.

Another critical issue is normalization of the image intensity range. Not only do counts

vary significantly between patients, they are also different between the rest and stress im-

ages for the same patient. There is no easy way to correct that. Typically, numerical values

are normalized as a percentage of the maximum count in a given three-dimensional image.
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4.2 Model of a Normal Left Ventricle

There are a number of possible approaches to create a model of the left ventricle. Re-

cently, physics-based deformable models have been gaining in popularity (Declerck, Feld-

mar, Goris, and Betting, 1997). The premise is that they are well suited to deal with natural

anatomical differences, but their drawbacks are their relative complexity, and they are diffi-

cult to use in cases when there are large perfusion defects. Physical-based deformable mod-

els are particularly useful for tracking a motion of LV, for instance, in gated-pool SPECT

imaging. SPECT images used in this research are static. Thus, we decided to build a rigid

model of the left ventricle by “averaging” a set of images corresponding to cases diagnosed

by the interpreting physician as normal. We also decided to use, for models only, the images

that were evaluated by the most experienced physician. Images were additionally screened

for excess presence of noise and artifacts. Before averaging, the selected case images are

translated, rotated, and scaled to obtain the best match between them. A variant of best-

first heuristic was used to make correlation search computationally feasible. Once matched

to each other, case images were added, constituting anaveraged model. Due to anatom-

ical differences between patients, models for females and males were created separately.

The format of a model is the same as a three-dimensional SPECT image, so a cardiologist

can easily evaluate its quality. Each model was manually inspected, and the locations of

slices and regions of interest for this particular model were recorded. An example of three-

dimensional rendering of a male rest model is shown in Fig. 4.3. The rendering was created

using the Visualization Toolkit library (Schroeder, Martin, and Lorensen, 1998); the library

can be freely downloaded fromhttp://www.kitware.com .

4.3 3D Image Registration

To ensure repeatability and robustness of the feature extraction, we ideally require that the

object of interest on the analyzed images have the same spatial orientation and scale. In
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(a) Registration reference (b) Image to be registered

Figure 4.4:Sample 2D image registration problem. Images represent horizontal long

view of a left ventricle. Image (a) comes from a model of a normal LV;

image (b) from a patient with infarct.

image processing this operation is calledregistrationor image matching. An example of a

2D image registration problem is presented in Fig. 4.4, 3D image registration problem in

Fig. 4.5. Image (a) represents a desired orientation and scale. Image (b) has to be translated,

rotated and scaled to match the object model in image (a).

Let IM denote the three-dimensional reference image – the image containing the model

object. LetIC denote the three-dimensional image that needs to be registered toIM . Let

IR = T (IC) denote the imageIC after registration. The problem of image registration is

that of finding a transformationT . TransformationT when applied to imageIC matches

the considered object in that image, in our case the left ventricle, with the model object in

imageIM .

In the approach presented here we search for the optimal registration transformationT

by maximizing thecross-correlation coefficient

r(T ) =

∫
W

IM(x) T [IC(x)] dx√∫
W

I2
M(x) dx

∫
W

T 2[IC(x)] dx
(4.1)

wherex = [x1, x2, x3]
T is a three-dimensional pixel coordinate,I(x) is the gray level value

of pixel x in imageI. W is the integration domain, typically is the whole volume of the
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(a) Registration reference (b) Object to be registered

Figure 4.5:Sample 3D image registration problem. Images represent isosurface render-

ing of 3D cardiac SPECT images. Image (a) comes from a model of a normal

LV; image (b) from a patient with a very well visible infarct.

reference imageIM . The cross-correlation coefficient is a useful similarity measure. It is

zero for totally dissimilar images and reaches maximum of one for identical images.

Since image coordinates are discrete, we use sums rather than integrals to calculate the

correlation coefficients:

r(T ) =

∑
W IM(x) T [IC(x)]√∑

W I2
M(x)

∑
W T 2[IC(x)]

. (4.2)

Alternative approaches to left ventricle registration, including these based on physics-

based deformable models, can be found in (Declerck et al., 1997) or (Qian, Mitsa, and

Hoffman, 1996) among others.

4.3.1 3D Image Transformation

TransformationT used here for registration of images is a superposition of three component

transformations:

• translationTt,

• rotationTα, and
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• scalingTs.

The superposition of these transformations can be expressed as follows:

T [I] = (Tt ⊕ Tα ⊕ Ts)[I] = Tt [Tα [Ts [I]]] . (4.3)

TransformationIR = T [IC ] assigns new coordinates to each of the pixels in the original

imageIC new coordinates and maintains its intensity. The transformation is continuous.

The new coordinates, after transformation, are not discrete. Thus, the transformation is

practically computed backwards. We start with discrete coordinates in imagesIR and cal-

culate what would be the original coordinates in the imageIC . Since the original image

contains only pixels at discrete coordinates a tri-linear interpolation is performed to find

the estimation of the intensity in the imageIR.

In the following four sections, we first describe calculation of each of the component

transformationsTt, Tα, andTs followed by the description of the tri-linear interpolation.

We will usex(1) to denote coordinates of a point before a particular transformation, and

x(2) to denote coordinates of the same point after transformation.

Translation

Translation transformationTt is described by three parameterst = [t1, t2, t3]
T whereti is

a translation along coordinate axisxi. Translation is defined by the following formula:

Tt

[
I
(
x(1)
)]

= I
(
x(2)
)

= I
(
x(1) + t

)
(4.4)

Thus

x(1) = x(2) − t. (4.5)

Rotation

Rotation transformationTα is described by three angular parametersα = [α1, α2, α3]
T

whereαi is a rotation around line parallel to the axisxi, and a center of rotationx(0). Rota-



26

α

ϕ

(x(1), y(1))

(x(2), y(2))

(x(0), y(0))

Figure 4.6:Rotation in 2D.

tion Tα can be represented by a three simpler rotations performed for each axis separately:

Tα[I] = (Tα1 ⊕ Tα2 ⊕ Tα3)[I]. (4.6)

Each of the component rotationsTαi
can be seen as a two-dimensional transformation in a

plane perpendicular to axisxi.

Rotation in 2D Let α be a rotation angle. Let point(x(0), y(0)) be a center of rotation.

Let (x(1), y(1)) denote a point coordinates before rotation, let(x(2), y(2)) denote coordinates

of the same point after rotation, (see Figure 4.6). Coordinates of the pointbeforerotation

can be calculated using the following formulas:

r =

√
(x(2) − x(0))

2
+ (y(2) − y(0))

2

ϕ = arctan
y(2) − y(0)

x(2) − x(0)

x(1) = r cos(ϕ− α)

y(1) = r sin(ϕ− α)

(4.7)

Rotation in 3D Formulas used to compute component rotations in 3D are a straight-

forward extension of the formulas presented in Eq. (4.7). They are presented here for a

convenient reference.
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Coordinates of the original point for the rotationTα1 :

r1 =

√(
x

(0)
2 − x

(2)
2

)2

+
(
x

(0)
3 − x

(2)
3

)2

ϕ1 = arctan
x

(2)
3 − x

(1)
3

x
(2)
2 − x

(1)
2

x
(1)
1 = x

(2)
1

x
(1)
2 = r1 cos(ϕ1 − α1)

x
(1)
3 = r1 sin(ϕ1 − α1)

(4.8)

Coordinates of the original point for the rotationTα2:

r2 =

√(
x

(2)
1 − x

(0)
1

)2

+
(
x

(2)
3 − x

(0)
3

)2

ϕ2 = arctan
x

(2)
1 − x

(0)
1

x
(2)
3 − x

(0)
3

x
(1)
1 = r2 sin(ϕ2 − α2)

x
(1)
2 = x

(2)
2

x
(1)
3 = r2 cos(ϕ2 − α2)

(4.9)

Coordinates of the original point for the rotationTα3:

r3 =

√(
x

(2)
1 − x

(0)
1

)2

+
(
x

(2)
2 − x

(0)
2

)2

ϕ3 = arctan
x

(2)
2 − x

(0)
2

x
(2)
1 − x

(0)
1

x
(1)
1 = r3 cos(ϕ3 − α3)

x
(1)
2 = r3 sin(ϕ3 − α3)

x
(1)
3 = x

(2)
3

(4.10)

Scaling

We decided to use isotropic scaling; thus, the scaling transformationTs is described by a

parameters and the center of scalingx(0), that is the same as the center of rotation.

Ts

[
I
(
x(1)
)]

= I
(
x(2)
)

= I
(
s
(
x(1) − x(0)

)
+ x(0)

)
(4.11)
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Thus

x(1) =
x(2) − x(0)

s
+ x(0) (4.12)

4.3.2 Tri-linear Interpolation

The material presented in this section is an extension of a two-dimensional bi-linear inter-

polation presented in (Press, Teukolsky, Vetterling, and Flannery, 1992) to three-dimensions.

We call it a tri-linear interpolation.

In three dimensions, we imagine that we are given a matrix of image intensity values

Ia[1..m][1..n][1..p]. We are also given arraysx1a[1..m], x2a[1..n], x3a[1..p] that describe

coordinates of pixels in the imageI in each of the axisx1, x2, andx3, respectively. The

relation of these inputs and the underlying imageI(x1, x2, x3) is

Ia[i][j][k] = I (x1a[i], x2a[j], x2a[k]) (4.13)

We want to estimate, by interpolation, the gray level of imageI at some untabulated point

(x1, x2, x3).

An important concept is that of thegrid cubein which the point(x1, x2, x3) falls, that

is, the eight tabulated points that surround the desired interior point. For convenience, we

will number these points from 1 to 8. More precisely, if inequalities

x1a[i] ≤ x1 ≤ x1a[i + 1]

x2a[j] ≤ x2 ≤ x2a[j + 1]

x3a[k] ≤ x3 ≤ x3a[k + 1]

(4.14)
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definei, j andk, then

I1 ≡ ya[i][j][k]

I2 ≡ ya[i + 1][j][k]

I3 ≡ ya[i + 1][j + 1][k]

I4 ≡ ya[i][j + 1][k]

I5 ≡ ya[i][j + 1][k + 1]

I6 ≡ ya[i + 1][j][k + 1]

I7 ≡ ya[i + 1][j + 1][k + 1]

I8 ≡ ya[i][j + 1][k + 1]

(4.15)

The tri-linear interpolation on the grid cube is formulated as follows:

t ≡ (x1 − x1a[i])/(x1a[i + 1]− x1a[i])

u ≡ (x2 − x2a[j])/(x2a[j + 1]− x2a[j])

v ≡ (x3 − x3a[k])/(x3a[k + 1]− x3a[k])

(4.16)

so thatt, u, andv each lie between 0 and 1, and

I(x1, x2, x3) = (1− t) · (1− u) · (1− v) · I1 + t · (1− u) · (1− v) · I2

+ t · u · (1− v) · I3 + (1− t) · u · (1− v) · I4

+ (1− t) · (1− u) · v · I5 + t · (1− u) · v · I6

+ t · u · v · I7 + (1− t) · u · v · I8

(4.17)

4.3.3 Computation of Image Registration Transformation

Computation of the cross-correlation coefficient for three-dimensional images is a com-

putationally intensive process. As presented above, the three-dimensional registration has

seven degrees of freedom:

• translation in three dimensions:t1, t2, andt3;
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• three rotation angles:α1, α2, α2;

• and a scaling factors.

To make the registration of cardiac SPECT images based on cross-correlation coefficient

practical we first estimate the registration transformation and then refine the transformation

parameters by performing abest-firstheuristic search with decay in the seven-dimensional

parameter space. The parameter decay was added to dump oscillations we had experienced

when first testing the best-first search.

Estimation of the Image Registration Transform

We estimate two components of the registration transform: translationTt and scalingTs.

The estimation is based on detecting a three-dimensional blob representing the left ventricle

walls in the model and the target image. A SPECT image is first thresholded at 55% of

the maximum intensity of that image to create a binary image. Next, a three-dimensional

connected component labeling algorithm1is applied to the binary image to label all blobs in

the image. The largest blob near the center of the image is considered to be the left ventricle.

The thresholding level has been experimentally set at its value of 55% to guarantee that it

is practically always the case.

LetB denote a set of pixels constituting a blob. We will assume thatx ∈ Bmeans that a

pixel with coordinatesx is a member of the blobB. We can also writeB = {x(1), . . . ,x(n)},

wheren is the number of pixels in the blob.

We define acenterof a blobB, denoted bȳx as an average of blob points’ coordinates:

x̄ =
1

n

n∑
i=1

x(i) (4.18)

1We generalized the connected component labeling algorithm to three-dimensions. The main difference

from the two-dimensional version was how the pixels are selected during GROW/MERGE phase. This is

illustrated in Fig. 4.7.
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Figure 4.7:Connected component labeling in 3D. Search for GROW/MERGEcandidates

in the case of 4-neighborhoods.

This definition was giving us better results in estimating translation transformationTt than

other approaches including defining the blob’s center as a center of gravity.

Let x̄M be a center of the blobBM representing left ventricle in the reference imageIM

and letx̄C be a center of the blobBC representing left ventricle in the target imageIC . We

estimate the translation transformationTt as distance between centers of blobsBM andBC :

t = x̄M − x̄C (4.19)

In order to estimate the scaling transformTs, we introduce a notion that we call a scale

factor. A scale factorof a blobB, denoted byξ is a median distance of pixels belonging

to the blob from the blob’s center̄x. Let ξM be a scale factor of the blobBM , andξC be a

scale factor of the blobBC . Then, we can estimate the scaling transformTs as follows

s =
ξM

ξC

(4.20)

As with the definition of blob’s center, the approach to estimate the scaling transform based

on the scaling factor consistently give better scale estimates than other approaches we
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Algorithm 4.1 Cardiac SPECT image registration estimation.

1. for the reference imageIM and the target imageIC do

2. Threshold the image at 55% of the maximum gray level value

3. In the binarized image find the largest blobB representing the left ventricle wall

4. Calculate:̄x – center of the blob

5. Calculate:ξ – size factor the blob

6. Estimate translation transformation̂Tt: t = x̄M − x̄C

7. Estimate scaling transformation̂Ts: s = ξM

ξC

8. return registration transforation estimatêT = T̂t ⊕ T̂s.

tested.

The algorithm of registration transformation estimation is summarized in Alg. 4.1.

Registration Refinement: Best-First Search with Parameter Decay

The initial estimate of the registration transformationT given by Alg. 4.1 is refined by

performing an optimization/search that maximizes the correlation coefficientr(T ) given

by Eq. (4.2). The search is performed as a series of local neighborhood searches. We start

by defining asearch step∆

∆ = [∆t1 , ∆t2 , ∆t3 , ∆α1 , ∆α2 , ∆α3 , ∆s]
T

A search neighborhoodis defined by a search centerT (0), and the maximum number of

stepsγ that can be taken from the center. The search neighborhood consists of(2γ + 1)7

points. Forγ = 1 it is 37 = 2187 points, forγ = 2 it consists of57 = 78125 points, and so

on. Typicallyγ = 1 is a good enough tradeoff between accuracy and computational com-

plexity. The transformationT ′ in the search neighborhood that has the highest correlation

coefficientr(T ′) becomes the center of the next search neighborhood. The local search is

repeated as long as the change in the correlation coefficientδ ←
∣∣r(T ′)− r(T (0))

∣∣ is greater
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Algorithm 4.2 Registration refinement: best-first search with parameter decay

1. i ← 0 {iteration number}

2. δ ← ∞ {change in the correlation-coefficient}

3. Estimate the registration transformationT̂ using Alg. 4.1

4. T (0) ← T̂ {search neighborhood center}

5. while i < iMAX and δ > δMIN do

6. Find best new transformationT ′ within maximum step rangeγ ·∆ from T (0)

7. if r(T ′) > r(T̂ ) then T̂ ← T ′ {remember the best transformation so far}

8. δ ←
∣∣r(T ′)− r(T (0))

∣∣
9. T (0) ← T ′

10. ∆← µ ·∆ {reduce search step in next iteration by the decay factorµ}

11. i← i + 1

12. return T̂ .

than the limit valueδmax or until the maximum number of iterations has been reached.

During initial tests, we noticed that the best-first search described in the previous para-

graph has a tendency to get into a sustained oscillation cycle two or more iterations long.

To get rid of this phenomenon we introduced a decay factorµ that decreases the search step

in each iteration. This helps to dampen the oscillations whenever they occur.

The final algorithm of registration transformation refinement, including parameter dump-

ing, is summarized in Alg. 4.2.

Image Registration Database

The calculation of the registration transformations for each of the images for over 350

cases (with diagnosis) in the SPECT database was quite time consuming. However this

calculation needed to be performed only once. We have added to the SPECT database a

table containing the registration transformation parameters and the corresponding value of
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the cross-correlation coefficient for each image and a model of normal left ventricle.

4.4 Extraction of Features from Registered Images

Feature extraction consists of two phases. First, objects of interest in the image are de-

tected. Next, for each of the objects, or their parts, some features of interest are calculated.

For SPECT images, the objects of interests are walls of the left ventricle. Following the

approach described Section 4.1, we are interested in parts of left ventricular walls cor-

responding to twenty-two regions of interest presented in Fig. 4.1. We understand these

twenty-two regions as 3D parts of the left ventricular walls. Once we are able to locate a

region within a 3D SPEC image, a set of features is calculated for each of them separately.

We can define a feature, for instance, as a median pixel intensity within a region.

4.4.1 Detection of Objects in SPECT Images

We have considered a number of approaches for detection of left ventricle walls. One

of these approaches has been presented in Section 4.3.3 – an image is thresholded, and

objects are detected by connected-components labeling. This approach is computationally

efficient and sufficient for the purpose of registration transformation estimation, but not

robust enough for detection of left ventricle walls. It only gives a coarse estimate of their

location; a single threshold value is not sufficient.

An approach based on spherical radial gradient search has been proposed by Declerck

et al. (1997). The difficulty with this approach is that the SPECT images typically are of

low contrast and transitions between pixels in infarcted or ischemic left ventricle wall are

small, making gradient detection methods impractical. This is especially true for Thallium-

201 SPECT images used in this research.

A method specifically designed for detection of free-shape objects on low contrast im-

ages has been presented in (Sacha et al., 1996). This method performs object detection
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using region growing approach. We have initially used it for detection of the left ventricle

walls, but have encountered problems related to low resolution of SPECT images (small

pixel size of objects).

The method that proved most robust in our experiments is based on spherical radial

search presented by Goris et al. (1987). We eventually used a variant of this method that

performs search in cylindrical coordinates since it is closer to the cardiologist’s interpreta-

tion process presented in Section 4.1.

Spherical Radial Search

Goris et al. (1987) presented a modified method ofbull’s-eyeimages creation that uses only

spherical search. A typical bull’s-eye method uses a combination of cylindrical and spher-

ical radial search; spherical search is performed in the apex area, cylindrical search in the

mid and basal section of the left ventricle. The method presented by Goris et al. (1987) uses

only spherical radial search with a center positioned near the base of left ventricle. In what

follows, we will refer to this method asGBB(from name of the authors Goris, Boudier, and

Briandet). While describing the GBB method, we will point where our implementation of

the spherical search differs.

Background subtraction The initial step in the GBB method is background subtraction.

It is done at a fixed level of 33% of the maximum pixel value in the three-dimensional

image. Beside a typical maximum search along a radius, the authors also compute integral

along the radius. The main reason for the background subtraction is, in our opinion, to

improve repeatability of the integration results.

Reorientation and center selection In the GBB method, the LV image is manually re-

oriented to normalize its position. A center of radial search is selected manually, by the

operator before the search is performed. In our approach, a model of a normal left ventricle

is utilized for reorientation (registration) and automatic selection of the radial search center.
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Figure 4.8:Spherical coordinates system.

Radial search The spherical system of coordinates is presented in Fig. 4.8.x(0) is the

center of the spherical coordinates (the same as the center of the radial search). Coordinates

of a pointx are represented by a triple(θ, ϕ, ρ), whereθ is an angle between vector~r =

x − x(0) and axisx1, ϕ is an angle between vector~r and axisx3, andρ is the length of

vector~r.

x1 = x
(0)
1 + ρ sin(ϕ) sin(θ)

x2 = x
(0)
2 + ρ sin(ϕ) cos(θ)

x3 = x
(0)
3 + ρ cos(ϕ)

(4.21)

The search is performed along the vector~r for ρ ranging from 0 to some maximum value

ρmax. Angle θ is changed in the full range form0o to 360o, and angleϕ from −135o to

+135o.

Two mappings are created during the search:IMAX(ϕ, θ) andITOT (ϕ, θ). TheMAX

mapping contains the maximum value found along vector~r for fixed ϕ andθ. TheTOT
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Figure 4.9:Bull’s-eye images created by spherical unwrapping of the left ventricle.

mapping contains the integral of values found along vector~r for fixedϕ andθ.

IMAX(ϕ, θ) = max
ρ∈[0,ρmax]

I(ϕ, θ, ρ)

ITOT (ϕ, θ) =

∫ ρmax

0

I(ϕ, θ, ρ) dρ

(4.22)

To make the visualization of the radial search results more intuitive, mappingsIMAX(ϕ, θ)

andITOT (ϕ, θ) are transformed to(x1, x2) coordinates forming two round images.

x1 = ϕ cos(θ) + x
(0)
1

x2 = ϕ sin(θ) + x
(0)
2

(4.23)

In the IMAX(x1, x2) andITOT (x1, x2) the center of an image represents the apex of the

left ventricle, edges of an image are near the base of the left ventricle. An example of

IMAX(x1, x2) andITOT (x1, x2) for REST and STRESS SPECT images created during our

experiments is presented in Fig. 4.9.

Cylindrical Radial Search

Cylindrical radial search, or cylindrical unwrapping, is similar to the spherical radial search

except it is performed in the cylindrical coordinate system, see Fig. 4.10. The following



38

θx1

x(0)

x

ρ

x2

x3

z

Figure 4.10:Cylindrical coordinate system.

formulas define transformation from cylindrical to cartesian coordinates.

x1 = x
(0)
1 + ρ sin(θ)

x2 = x
(0)
2 + ρ sin(θ)

x3 = x
(0)
3 + z

(4.24)

TheMAX andTOT mappings are calculated in a fashion similar to the spherical search.

IMAX(z, θ) = max
ρ∈[0,ρmax]

I(z, θ, ρ)

ITOT (z, θ) =

∫ ρmax

0

I(z, θ, ρ) dρ

(4.25)

We do not convert these mappings to(x1, x2) coordinates, as it is done in bull’s eye methods

(Van Train et al., 1994). We use them directly for the feature extraction since conversion

introduces additional interpolation errors.

4.4.2 Radial Search and Location of 22 3D ROIs

Radial search transforms 3D SPECT images creating 2D maps. The objective is to remove

irrelevant information from 3D images and present the relevant information in a simpler

2D form.
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Short Axis Views

The cylindrical search is well suited for detection of left ventricle walls in the short axis

views (Fig. 4.1). The walls in these views are roughly cylindrical in shape. We can interpret

each of the short axis ROIs, in 3D images, as a wedge. These wedges can be one or more

slices in thickness. Fig 4.11 (a) and (b) shows our selection of angles that define the wedges

in 3D images. The map created by the spherical radial search is a rectangular image,IMAX

or ITOT . Each of the wedges corresponds to a rectangular area in that image, as shown in

Fig 4.11 (c). A single image contains data for the apical, mid, and basal views. Angleθ

is changing in the full range of360o starting at−135o and finishing at225o. The center of

search and range forz andρ depends on the model of the normal left ventricle used. Center

of search is located at the center of the left ventricular cavity.z typically spans nine slices,

three for each of the views.

Long Axis Views

We also use radial spherical search for detection of left ventricle walls in long axis views.

The left ventricle walls are roughly cylindrical in shape in these views, as shown in Fig. 4.12

and 4.13. Cylindrical search maps are created separately for the horizontal long and hor-

izontal short axis views. Anglesθ defining the ROIs and location of the center of search

for the horizontal long axis are presented in Fig. 4.12.θ ranges from−235o to 80o. An-

glesθ defining the ROIs and location of the center of search for the vertical long axis are

presented in Fig. 4.13.θ ranges from−160o to 160o.

Note that we follow the common convention in image processing where pixels coordi-

nates increase from top to bottom and from left to right.
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Figure 4.11:Regions of interest for cylindrical radial search – short axis views.
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Figure 4.12:Regions of interest for cylindrical radial search – horizontal long axis view.

4.4.3 Feature Extraction from Radial Search Maps

We use the radial search mapsIMAX and ITOT created for 3D rest and stress study for

feature extraction. Each of the maps is partitioned into regions corresponding to 22 ROIs,

as described in the previous section. For each partition, we calculate the maximum, mean,

median, and standard deviation of pixel values in that partition. This way we have 16

features extracted in each ROI. Features, after extraction, have been stored in dedicated

tables in the SPECT database. Feature records also contain information about normal left
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Figure 4.13:Regions of interest for cylindrical radial search – vertical long axis view.

ventricle models used for image registration, registration transformation, and parameters

used for creation ofIMAX andITOT images. We use this information to prepare data for

perfusion classification experiments described in Chapter 8.



Chapter 5

Bayesian Networks

Almost any practical artificial intelligence application requires dealing with uncertainty.

Diagnosis of the left ventricle perfusion is a very good example. The input data, cardiac

SPECT images, are intrinsically noisy. The noise is due to technical limitation (low reso-

lution of the detector cameras, quality of the 3D reconstruction algorithms), safety consid-

erations (dosage of the radioactive trace that a patient is injected with cannot be arbitrarily

large resulting in reduced image signal-to-noise ratio), and anatomical differences between

patients (organ size and shape, distribution of the radioactive trace after injection, artifacts

due to an organ diffusing or absorbing diagnostic photons). Our output data, physician’s

diagnosis, is to a large extent subjective and difficult to quantify.

Until recently, application of a strict mathematical approach to reasoning under uncer-

tainty was considered impractical. This was mostly due to the problem of computing the

joint probability distribution of large number of random variables involved in reasoning.

The last decade has seen significant theoretical advances and increasing interest ingraphi-

cal models. A graphical model is a way of representing dependency relationships within a

set of random variables. Random variables are represented by nodes in a graph. An arc in

the graph intuitively corresponds to a dependency relationship between two variables. The

lack of an arc can be intuitively interpreted as a lack of dependency between two variables,

43
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Figure 5.1:Examples of graphs representing graphical models.

see Fig. 5.1. This intuitive graphical interpretation of dependencies between variables is

one of the reasons for popularity of graphical models. Other reasons for their popularity

are the significant progress in theory and algorithms for inference, and advances in learn-

ing structure and parameters of graphical models (Jordan, 1998). Most importantly, there is

a considerable number of successfully tested applications of graphical models (Haddawy,

1999).

One of the most popular types of graphical models areBayesian networks. The main

characteristic differentiating them from other graphical models is that arcs in the network

are directed, representing conditional dependence among variables. The name comes from

the fact that most theory relevant to Bayesian networks is bases on Bayesian probability.

The remaining material in this section presents overview of topics relevant to the use and

learning of Bayesian networks.
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5.1 Basic Concepts

Notation Random variables are denoted by capital letters, e.g.X. Values of these

variables are denoted by small letters,x. Bold letters denote sets of variables,X =

{X1, . . . , Xn}, or variable valuesx = {x1, . . . , xn}. ξ denotes background knowledge.

Bayes theorem The conditional probability of a random variablea, given a random vari-

ableb can be calculated as follows:

p(a|b) =
p(b|a)p(a)

p(b)
(5.1)

Chain rule Joint probability ofx can be expressed as a product of conditional probabili-

ties:

p(x) =
n∏

i=1

p(xi|x1, . . . , xi−1) (5.2)

Bayesian Network A Bayesian network for a set of random variablesX = {X1, . . . , Xn}

is a pairB = 〈S, P 〉, whereS is a directed acyclic graph (DAG) whose nodes are in one-to-

one correspondence with random variables inX. P is a set of local probability distributions

associated with each variable.Xi denotes both the variable and its corresponding node in

S. We usePai to denote parents, andpai to denote configuration of parents of nodeXi in

S as well as variables corresponding to these parents. The joint probability represented by

the structureS is given by:

p(x) =
n∏

i=1

p(xi|pai) (5.3)

The local probability distributionsP are the distributions corresponding to the terms in

Eq. (5.3). An example of a Bayesian network is presented in Fig.5.2. The probability

distribution represented by this network is:

p(x1, x2, x3, x4, x5) = p(x1|x2, x5) · p(x2) · p(x3|x5) · p(x4|x3, x5) · p(x5). (5.4)
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Figure 5.2:Example of a Bayesian network graph.

5.2 Inference

Because a Bayesian network forX determines a joint probability distribution forX, we

can – in principle – use the Bayesian network to compute any probability of interest. For

instance:

p(x1|x2, . . . , xn) =
p(x1, . . . , xn)∫
p(x1, . . . , xn)dx1

(5.5)

For problems with many variables this direct approach is not practical. Some more

efficient methods of exact and approximate inference in Bayesian networks have been es-

tablished. The following algorithms for exact inference in networks with discrete variables

exist:

• A Bayesian network is first transformed into a tree where each node corresponds to a

subset of variables inX. The algorithm then exploits mathematical properties of this

tree to perform probabilistic inference. (Lauritzen and Spiegelhalter, 1988; Jensen,

Lauritzen, and Olesen, 1990; Dawid, 1992). A good discussion of practical issues

involved in its implementation is presented in (Huang and Darwiche, 1994). This is

the most commonly used algorithm.

• The arcs in the network structure are being reverced until the answer to the given

probabilistic query can be read directly from the graph. Each arc reversal corresponds
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to an application of the Bayes’ theorem (Howard and Matheson, 1983; Omstead,

1983; Shachter, 1988).

• A message passing scheme that updates the probability distributions for each node

in a Bayesian network in response to observations of one or more variables (Pearl,

1986).

• Symbolic simplification of sums and products (D’Ambrosio, 1991).

Exact inference in networks with continuous distributions have been studied by Shachter

and Kenley (1989) for multivariate-Gaussian distributions, and Lauritzen (1992) for Gaussian-

mixture distributions.

Exact inference in Bayesian networks is NP-hard1 (Cooper, 1990; Heckerman, 1996).

The problem is due to undirected cycles that may be present in a Bayesian network. Ap-

proximate inference in Bayesian networks is a topic of current research. Existing ap-

proaches include: pruning the model and performing exact inference on the reduced model

(Kjærulff, 1993), cutting loops and bounding the incurred error (Draper and Hanks, 1994),

variational methods to bound the node probabilities in sigmoidal belief networks (Jaakkola,

1997; Jordan, Ghahramani, Jaakkola, and Saul, 1998).
1NP-hard meansnon-polynomial-hard. Generally, algorithms are considered tractable when the time

needed to execute the algorithm is a polynomial of the number of parameters, e.g., number of nodes in the

network (Even, 1979). In particular, this function can be linear in the number of parameters. When there are

no algorithms to solve a given problem so that the time needed to execute that algorithm grows no faster then

according to some polynomial function of parameters, the problem is called NP-hard. For instance, a problem

for which the most efficient algorithm has the execution time exponential with the number of parameters is

NP-hard.
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5.3 Learning Parameters

In this section, we assume that the structure of a Bayesian network is known (learning of

the network structure will be described in the next section), all data is complete, and there

are no hidden variables. LetSh denote the hypothesis that the joint probability ofX can

be factored according to structureS. Let θS = {θ1, . . . , θn} be a set whereθi is the vector

of parameters for the local distribution functionp(xi|pai, θi, S
h) 2. Now we can write the

joint probability distribution as

p(x|θS, Sh) =
n∏

i=1

p(xi|pai, θi, S
h) (5.6)

The problem of learning parameters in a Bayesian network is that of computing the poste-

rior distributionp(θS|D, Sh).

Assume that parametersθi are mutually independent, then

p(θS|Sh) =
n∏

i=1

p(θi|Sh) (5.7)

Under assumption of complete data and parameter independence, the parameters remain

independent given the random sample:

p(θS|D, Sh) =
n∏

i=1

p(θi|D, Sh) (5.8)

In other words, each of the parametersθi can be computed independently of others.

Learning parameters from complete data is discussed in (Spiegelhalter and Lauritzen,

1990). A more recent discussion can be found in (Buntine, 1994). Computation of param-

etersθi is most convenient for distributions in the exponential family and conjugate priors.

Heckerman (1996) discusses parameters for unrestricted multinomial distribution, details

of their computation will be presented in Section 7.3. Calculations for linear regression

with Gaussian noise are in (Buntine, 1994; Heckerman and Geiger, 1995).
2Local distribution functionp(xi|pai, θi, S

h) is a probabilistic classification or regression function. A

Bayesian network can be viewed as a collection of probabilistic classification/regression models (Heckerman,

1996).
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5.4 Learning Structure

5.4.1 Strict Bayesian Approach

Let us assume that data is complete and there are no hidden nodes; define a discrete variable

representing possible hypothesis about network structureSh and assign probabilitiesp(Sh).

The task of learning the network structure using Bayesian approach is that of computing

the posterior distributionp(Sh|D). In principle p(Sh|D) can be computed using Bayes

theorem:

p(Sh|D) =
p(Sh)p(D|Sh)

p(D)
(5.9)

Parameters of the network are learned as described above by computing posterior distribu-

tion p(θS|D, Sh).

When we assume that hypothesesSh are mutually exclusive we can compute the joint

probability distribution of the unobserved casexN+1 given training setD as follows:

p(xN+1|D) =
∑
Sh

p(Sh|D)

∫
p(xN+1|θS, Sh)p(θS|D, Sh)dθS (5.10)

Although mathematically correct, the full Bayesian approach is not practical. The prob-

lem is with summations like the one overSh in Eq. (5.10). The number of possible struc-

tures increases more than exponentially with the number of variables (network nodes).3

In practice, the sum in Eq. (5.10) is approximated in some manner. Typically this ap-

proximation is done using only a single model. This model is selected, as representative,

from among all of the possible models based on the assumption that posterior distribution

p(Sh|D) has a single narrow peak for that selected model. There are two approaches to

model selection. In the first, designated here assearch & scoring, some criterion is used to

measure the degree to which a network structure fits the prior knowledge and data; a search
3This number can be determined for a given number of nodesn using a function published by (Robinson,

1977). Even for a number of nodes as small as 10, the number of possible nodes is approximately4.2× 1018

(Krause, 1998).
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method is used to find a model that best fits the data. In the second approach, designated

here asdependency analysis, the dependency relationships are measured locally using some

kind of conditional independence test, such as theχ2 test or a mutual information test. Gen-

erally, the first category of model selection algorithms has less time complexity in the worst

case (when the underlying DAG is densely connected), but it may not find the best solution

due to its heuristic nature. The second category of algorithms is usually asymptotically cor-

rect when the probability distribution of data satisfies certain assumptions, but conditional

independence tests with large condition-sets may be unreliable unless the volume of the

data is enormous (Cheng, Bell, and Liu, 1997b; Cooper and Herskovits, 1992).

Some researches approximate the sum in Eq. (5.10) by more then a single model us-

ing theselective model averaging. A manageable number of “good” models is selected

and pretended that these models are exhaustive. This approach is much more complex

than the model selection. It is advantageous to identify network structures that are signifi-

cantly different, so that they will represent the whole distribution of models (Krause, 1998).

The difficulty is in finding thesediverserepresentatives of networks structures. Selective

model averaging is discussed in (Buntine, 1991b; Heckerman, Geiger, and Chickering,

1995; Madigan and Raftery, 1994). In the following we will concentrate on the model

selection methods.

A number of techniques for learning is presented in (Buntine, 1994). More recently

Jordan collected a number of articles related to learning Bayesian networks and graphical

models in general (Jordan, 1998).

5.4.2 Model Selection by Search & Scoring Approach

This section presents some examples of quality measures used for scoring network struc-

tures, and algorithms that can be used to search through the space of possible network

structures.
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Bayesian Quality Measures

Bayesian quality measures rely on Bayesian statistics: Bayes’ theorem and conjugacy in

particular.4 The basic idea of the Bayesian quality measures is to assign to every network a

quality value that is function of the posterior probability distributionp(Sh|D). A frequently

used criterion is the log of the posterior probability:

log p(Sh|D, ξ) = log p(Sh|ξ) + log p(D|Sh, ξ) (5.11)

The logarithm is used for the numerical convenience. This criterion has two components:

the log prior and the log marginal likelihood. An equivalent criterion often used is:

log

(
p(Sh|D, ξ)

p(Sh
0 |D, ξ)

)
= log

(
p(Sh|ξ)
p(Sh

0 |ξ)

)
+ log

(
p(D|Sh, ξ)

p(D|Sh
0 , ξ)

)
(5.12)

The ratiop(D|Sh,ξ)

p(D|Sh
0 ,ξ)

is known asBayes’ factor. Sh
0 is some selected reference hypothesis.

The Bayesian score was originally discussed in (Cooper and Herskovits, 1992) and

further developed in (Buntine, 1991b; Heckerman et al., 1995). Two, alternative Bayesian

quality measures, derived using two different sets of assumptions, will be discussed in

Section 7.5.

Minimum Length Encoding Measures

This concept comes fromtheory of coding, where a string is encoded with as few bits as

possible. The score is based on the Minimal Description Length principle of Rissanen

(1989); the application of this principle to Bayesian networks was developed by several
4Unless the prior family of distributions is carefully selected, the resulting posterior probabilities may

not belong to the same families and mathematical treatment gets considerably complicated. If the prior and

posterior distributions are in the family of distributions for a given sampling process, we say that they are

natural conjugateto the given sampling process. That is, if a sample is used to update a prior probability

distribution in a conjugate family, the resulting posterior distribution will also belong to the same family. The

benefits of conjugacy include mathematical tractability; we obtain closed formulas for important quantities

used in Bayesian inference and learning.
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authors (Bouckaert, 1994; Lam and Bacchus, 1994; Suzuki, 1993). Proponents of MDL

measure argue that using only the posterior probabilityp(Sh|D) (Bayesian quality mea-

sure) results is a criterion that prefers networks with complete graphs, thus a factor penal-

izing for the size of the network is added to the criterion. However, the use of the MDL

score for construction of Bayesian networks has been criticized by Friedman et al. (1997).

These authors argue, with support of a theoretical and an empirical study, that the use of

MDL may result in networks with a limited number of conditional dependencies leading to

a poor approximation of the joint or marginal probability distributions.

Information Theoretic Measures

Another way of measuring the quality of a network is by the information measures. These

measures can be seen as a generalization of the MDL measures. The most well know

measures are:

MLIC Maximum likelihood information criterion. The measure is the log likelihood of a

Bayesian network given the training data. Unlike other information theoretic mea-

sures, it does not contain a penalty for the size of the network. It is equivalent to

Bayesian quality measures.

q(B, D) = LL(B|D)

AIC Akaike information criterion(Akaike, 1974). This measure is not consistent: in the

large sample limit, the true model may not be among these receiving maximal scores

(Schwarz, 1978).

q(B, D) = LL(B|D)− ‖B‖

BIC Bayesian information criterionalso known asSchwarz information criterion(Schwarz,

1978; Heckerman, 1996). BIC is easy to use and does not require evaluation of prior

distributions. Consequently, it can be a practical criterion to use in the appropriate
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circumstances (Kass and Raftery, 1995). BIC approximates posterior probabilities

in large samples (Glymour, Madigan, Pregibon, and Smyth, 1997). When applied to

networks with unrestricted multinomial distributions of variables and Dirichlet priors

on parameters, BIC leads to the same criterion as MDL – differing only by a minus

sign.

q(B, D) = LL(B|D)− logN

2
‖B‖

Model Search

K2 Algorithm Cooper and Herskovits (1992) describe the use of a greedy search algo-

rithm, K2, for identifying the most probable structure given some of the test data. The

algorithm assumes that ordering of nodes is given. It starts with an empty network and iter-

ates through each ofXi, according to their ordering. For eachXi it considers all nodes that

could be added to the existing set of parent nodespai. The candidate node that maximizes

the local scoring functionqi is selected. If addition of this node to the current set of parents

of Xi increases the local scoring function, it is added topai and the search for the next

parent ofXi continues. If the addition of that node does not increase the scoring function,

it is assumed that all parents ofXi are found and the algorithm starts to search for parents

of Xi+1. Pseudocode for the K2 algorithm is shown in Alg. 5.1 (Castillo, Gutiérrez, and

Hadi, 1997).

Buntine’s Algorithm An algorithm that does not require node ordering has been pro-

posed by Buntine (1991b). It starts with an empty parents set. At each step a new link is

added that does not lead to a cycle and maximizes the quality increment. The process is

repeated until no more increase of the quality is possible or a complete network is attained.

Pseudocode for this algorithm is presented in Fig. 5.2 (Castillo et al., 1997).
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Algorithm 5.1 K2 algorithm of Bayesian network construction.

{Initialization Step}

1. for i← 1 to n do

2. pai ← ∅

{Iteration Step}

3. for i← 1 to n do

4. repeat

5. SelectY ∈ ({X1, . . . , Xi−1} \ pai) that maximizesg = qi (pai ∪ {Y })

6. δ ← (g − qi(pai))

7. if δ > 0 then

8. pai ← (pai ∪ {Y })

9. until (δ ≤ 0) or (pai = {X1, . . . , Xi−1})

CB Algorithm Singh and Voltara (1995) proposed an extension to K2 algorithm they

called CB. The CB algorithm uses conditional independence tests to generate a “good”

node ordering from the data, and then uses K2 algorithm to generate the Bayesian network

from set of training samplesD using this node ordering. Starting with a complete, undi-

rected graph on all variables, the CB algorithm first deletes the edges between adjacent

nodes that are unconditionally independent (conditional independence test of order 0). CB

orients the edges in the resulting graph and obtains a total ordering on the variables. It

passes this ordering to the K2 algorithm to construct the corresponding network. The al-

gorithm then repeats this process by removing edges (from the undirected graph obtained

in the previous iteration) between adjacent edges that are conditionally independent given

one node (conditional independence test of order 1). CB keeps constructing the network

increasing the order of conditional independence tests as long as the predictive accuracy of

the resultant network keeps increasing.
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Algorithm 5.2 BUNTINE’ S algorithm of Bayesian network construction.

{Initialization Step}

1. for i← 1 to n do

2. pai ← ∅

3. for (i← 1 to n) and (j ← 1 to n) do

4. if i 6= j then

5. A[i, j]← (mi(X − j)−m(∅))

6. else

7. A[i, j]← −∞ {Prevent edgeXi → Xi}

{Iteration Step}

8. repeat

9. selecti,j that maximizeA[i, j]

10. if A[i, j] > 0 then

11. pai ← (pai ∪ {Xj})

12. for Xa ∈ Predi, Xb ∈ Desci do

13. A[a, b]← −∞ {Prevent loops}

14. for k ← 1 to n do

15. if A[i, k] > −∞ then

16. A[i, k]← (mi(pai ∪ {Xk})−mi(pai))

17. until (A[i, j] ≤ 0) or (A[i, j] = −∞), ∀ i, j
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Heckerman et al. (1995) discuss and evaluate learning structure of Bayesian networks

using hill-climbing and other variants of greedy search. Empirical studies of search algo-

rithms for learning structure on Bayesian networks can be found in (Aliferis and Cooper,

1994; Chickering, 1996; Spites and Meek, 1995). See (Chickering, 1996) for search over

equivalence network class.

5.4.3 Model Selection by Dependency Analysis

Learning structure of Bayesian networks by dependency analysis is based on performing

conditional independence tests on subsets of edges in the network graph. Two types of tests

are typically used: statistical tests and information theoretic tests. Statistical approaches

based onχ2 tests have been used in (Spites, Glymour, and Scheines, 1991; Wermuth and

Lauritzen, 1983). The use of information theoretic tests has been investigated by (Cheng,

Bell, and Liu, 1997a; Cheng et al., 1997b). The drawback of using conditional indepen-

dence tests is that they require large data sets when condition-sets are large.

Learning Tree Structures

Computation of conditional independence tests can be quite efficient when condition-sets

are small. We can restrict size of the condition-sets by putting constrains on the graph

representing the Bayesian network. Chow and Liu (1968) proposed to represent the condi-

tional dependence between random variables{X1, . . . , Xn} by a tree. A directed acyclic

graph on{X1, . . . , Xn} is a tree if each variableXi has exactly one parent, except for one

variable that has no parent (this variable is referred to as aroot). An example of a Bayesian

network that has a tree graph structure is presented in Fig. 5.3.

Chow and Liu (1968) weighted edges in the full graph using mutual information crite-

rion:

I(xi, xj) =
∑
xi,xj

p(xi, xj) log

(
p(xi, xj)

p(xi)p(xj)

)
(5.13)
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X1
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X2

X4

X6

X3

Figure 5.3:Bayesian network that has a tree graph structure.

Then they find a maximum spanning tree (Cormen, Leiserson, and Rivest, 1990) in that

full graph. (Chow and Liu, 1968) also demonstrated that the joint probability distribution

represented by the tree, constructed using their method, is an optimal approximation of the

true probability distribution (under assumption that the true distribution represents a tree

dependence among the variables). Despite restrictions imposed on the dependency among

random variables, this is an attractive method of Bayesian network construction due to its

low computational complexity(O(n2 ·N)) and its optimality properties.



Chapter 6

Bayesian Network Classifiers

A Bayesian network can be used for classification in a quite straightforward way. One of the

variables is selected as a class variable, and the remaining variables as attribute variables.

Inference methods presented in Section 5.2 can be used to calculate marginal distribution

of the class variable, see Fig. 6.1.

In general, we could use any of the Bayesian network structure learning methods pre-

sented in Chapter 5. Most of these methods are aimed at approximating the joint distri-

bution of the set of random variables{X1, . . . , Xn}. Classification, however, uses only

the marginal distribution of the class variable, which suggests the use of more targeted

Bayesian network learning methods. This section presents the most important results re-

A1

C A3

A2

A4

Figure 6.1:Bayesian network classifier.
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lated to construction of Bayesian networks for classification.

We will be using the following notation.D = {Dl}l=1,...,N is a set ofN training

examples,F = {Fk}k=1,...,M is a set ofM testing cases.Dl = {a(l), c(l)} wherea =

{x1, . . . , xn−1} is the configuration of attribute variables, andc = xn is the configuration

of the class variable. We also denote byc = {c(1), . . . , c(N)} anda = {a(1), . . . , a(N)}

sets of class values and attribute values, respectively, corresponding to the training cases

D = [a, c].

6.1 Bayesian Approach to Classification

A classification problem is that of assigning a correct class label to a set of attributes. The

classification error rate, or error of prediction, is the most commonly used measure of

classification quality:

ε =
1

M

M∑
k=1

(ĉ(k) − c(k)) (6.1)

whereĉ(k) denotes the correct class andc(k) is the predicted class for thekth case.

If the goal is to minimize error in prediction, the decision theory says we should choose

classc′ to maximize the posterior class probabilityp(c′|a′, a, c). This is the posterior aver-

age of the class probabilities predicted forc′ from all possible class probability structures

Sh:

p(c′|a′, a, c) =
∑
Sh

∫
θS

p(c′|a′, Sh, θS) p(Sh, θS|a, c) dθS

=
∑
Sh

p(Sh|a, c) EθS |Sh,a,c(p(c′|a′, Sh, θS))

(6.2)

where the summations are over the space of all possible network structuresSh, and

p(Sh|a, c) ∝
∫

θS

p(c|a, Sh, θS) p(Sh, θS) dθS, (6.3)

EθS |Sh,a,c(p(c′|a′, Sh, θS)) =

∫
θS

p(c′|a′, Sh, θS) p(θS|Sh, a, c) dθS (6.4)



60

A1 A3A2 A4

C

Figure 6.2:Bayesian network representing a naı̈ve Bayes classifier.

Eq. (6.2) simply says to average the class predictions made for each network structure.

Wherep(Sh|a, c), the posterior probability of the network structureSh, is the weight used

in the averaging process. In this formula,p(Sh, θS) is the prior on the space of class

probability networks, andp(c|a, Sh, θS) is the likelihood of the training sample.

Note that the classification learning problem given by Eq. (6.2) is similar to the prob-

lem of learning network structure given by Eq. (5.10). However, Eq. (5.10) describes the

joint probability distribution of a new unobserved casexn+1 = {a′1, . . . , a′n−1, c
′} given the

training samplesD, while Eq. (6.2) describes marginal distribution of an unknown classc′

given known values of attributesa′ = {a′1, . . . , a′n−1} and the training samplesD. As with

Eq. (5.10), direct use of Eq. (6.2) is not practical due to summation over all possible net-

work structuresSh. Thus, the algorithm design strategies for Bayesian network classifiers

are based on designing heuristic procedures to find a single structure or a set of structures

that can be used to approximate Eq. (6.2).

6.2 Näıve Bayes Classifier

The näıve Bayes classifier have been popularized by Duda and Hart (1973). Its simplic-

ity, efficiency, and low classification error rate make it one of the most commonly used

classifiers. The naı̈ve Bayes has a fixed structure and adjustable parameters. The structure

can be represented by a Bayesian network: the class node is a parent to all attribute nodes,
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Figure 6.3:Bayesian network representing a tree augmented naı̈ve Bayes classifier.

and there are no edges between the attribute nodes, see Fig. 6.2. In other words, a naı̈ve

Bayes classifier assumes that all the attribute variables are conditionally independent given

the class variable. Despite that, these assumptions are in most cases unrealistic the naı̈ve

Bayes classifier performs in many cases as well as state of the art classifiers. Recently, its

properties has been intensively studied, especially by Langley (Kononenko, 1990, 1991;

Langley, Iba, and Thompson, 1992; Langley and Sage, 1994; John and Langley, 1995;

Langley and Sage, 1999). The naı̈ve Bayes classifier has been an inspiration for a number

of other classification approaches. Two of them, that make use of Bayesian networks, are

presented below.

6.3 TAN – Tree Augmented Näıve Bayes Classifier

The main drawback of the naı̈ve Bayes classifier is the assumption of conditional indepen-

dence of attributes. Friedman et al. (1997) proposed a method that introduces dependencies

among attributes using the network construction method of Chow and Liu (1968) – it is as-

sumed that dependencies among attribute nodes can be represented by a tree structure, see

Fig. 6.3. The TAN algorithm (tree augmented naı̈ve Bayes) has complexityO(n3 ·N) and

has been demonstrated by Friedman et al. (1997) to perform as well or better than naı̈ve
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Figure 6.4:Example of a Bayesian network generated by K2-AS algorithm.

Bayes classifier and C4.5 classifier (Quinlan, 1993).

6.4 BAN – Bayesian Network Augmented Näıve Bayes Clas-

sifier

This approach is similar to the one in the previous section. TAN augments the naı̈ve Bayes

with dependencies among attributes having a tree structure. BAN augments the naı̈ve Bayes

with a general Bayesian network of dependencies among the attributes. The network of de-

pendencies among attributes may be constructed using any of the structure learning meth-

ods presented in Chapter 5. Unlike TAN, BAN cannot be constructed in a closed form

because the problem of construction unrestricted Bayesian networks is NP-hard.

6.5 K2-AS Algorithm

Singh and Provan (1995) combine attribute selection and Bayesian network construction

into a single algorithm, called K2-AS. The idea is to remove attributes that may not con-

tribute to classification; to construct a classifier network only from the “best” attributes.
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The algorithm consists of two phases:

attribute selection phase In this phase K2-AS chooses the subset of attributes∆ from

which the final network is constructed. The algorithm starts with the initial assump-

tion that∆ consists only of the class variableC. It then adds sequentially that at-

tribute whose addition results in the maximum increase in the predictive accuracy,

on the set of evaluation cases, of the network constructed from resulting set of at-

tributes. The algorithm stops when the addition of another attribute does not increase

predictive accuracy.

network construction phase K2-AS uses the final set of attributes∆ selected in the at-

tribute selection phase to construct a network using training data. This is done by

applying the CB algorithm described in Section 5.4.2.

The K2-AS algorithm has a relatively high computational complexity. An example of a

network generated by K2-AS is shown in Fig. 6.4.



Chapter 7

Learning Bayesian Network Classifiers:

A New Synthesis

Graphical models, and Bayesian networks in particular, provide a powerful mechanism

for modeling problem domains that are characterized by a significant amount of noise and

uncertainty. Diagnosis of cardiac SPECT images is a perfect example of such a domain.

Chapter 5 discussed the general problem of modeling using Bayesian networks. Chapter 6

introduced use of Bayesian networks for classification. This chapter proposes a new ap-

proach to learning Bayesian network classifiers; it presents a family of learning algorithms

and estimates their complexity. In Chapter 8, we will present results of using these new

algorithms for analysis of cardiac SPECT data.

As pointed out in Chapter 6, the problem of learning Bayesian network classifiers is

different from the problem of learning Bayesian networks in that the former approximates

marginal distribution of a class variable, see Formula (6.2), while the latter approximates

joint distribution of all variables, see Formula (5.10). Bayesian network learning algorithms

presented in this chapter are specifically designed for creation of classifiers. Our objective

is to maximize classification abilities of the constructed networks, and at the same time to

minimize the complexity of learning algorithms. The proposed algorithms attempt to strike

64
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balance between these two contradictory objectives.

Our classifier learning algorithms are based on the search-and-scoring approach. The

performance of the algorithms is maximized by constraining the structure of searched net-

works and the use of network metrics well matched to the classification task. We were

inspired by a remarkable performance of the simplest Bayesian network classifier: the

näıve Bayes. A significant amount of research has been devoted to study its performance.

The näıve Bayes classifier makes strict assumptions about the modeled environment: all

of the parameter variables are assumed to be mutually independent. This assumption is

almost always violated in practice. However the performance of the naı̈ve Bayes is not sig-

nificantly imparted by this violation (bias). It is believed that the secret of the naı̈ve Bayes

is that it has a small number of parameters allowing for their estimation with low variance,

even from limited number of training samples (Friedman, 1997). The low variance is able

to offset the bias in the estimation of the underlying conditional probability of the class

variable introduced by restrictive network structure. Our approach is based on extending

the näıve Bayes structure with the intention to minimize the amount of new parameters

added to the network.

One of the main factors contributing to steep increases in the number of parameters

is the number of parents for each variable in the network. The number of parameters

associated with each node in the network is exponential with the number of this node’s

parents. The first principle of our synthesis is to limit the number of parents for each node.

We will assume that each node has no more than two parents.

Our second assumption, constraining the structure of the network, is that any edge

between a class node and an attribute node is always directed away from the class variable

– a class variable has no parents. This assumption is dictated by the way an information is

passed between nodes in a Bayesian network during inference. When the value at a node

is known, the node is instantiated, and the node blocks any information passing from its

parents to its children. However, the information can be passed from children to parents.
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This property of Bayesian networks is calleddependency separation(Pearl, 1988; Jensen,

1996). Typically, when we perform inference about the class node, all attribute nodes

are instantiated. If an attribute node was a parent to the class node, then, since it was

instantiated, it would block the information path between its parents and the class variable;

it will make the class node conditionally independent from its parents. This is the situation

we would like to avoid in classification; we are only interested about the inference in the

class node and do not want to have superfluous edges and parameters in the network.

Friedman et al. (1997) introduced a tree-augmented naı̈ve Bayes classifier, TAN, and

demonstrated that it benchmarks well on a number of data sets from UCI Machine Learning

Repository (Blake, Keogh, and Merz, 1998). Friedman et al. (1997) assume that every

attribute depends on the class variable as is the case in the naı̈ve Bayes network structure.

Then, they extend the naı̈ve Bayes network structure by adding tree-like dependency among

attribute variables. In their approach, there is always an edge from the class node to every

attribute node, and there is always an undirected path between any attributes that do not

pass through the class variable. This may force dependencies between random variables in

the model that do not exist in reality, thus deteriorating classification performance.

We relax both of the constraints posed by Friedman et al. (1997) as well as restrictions

imposed by näıve Bayesian classifier. In our approach, not all attributes need to be de-

pendent on the class variable, and there can be no undirected path between two attribute

nodes. We introduce a family of network construction and search algorithms. Each of the

algorithms in our family differ in the trade-off it makes between computational complexity

and richness of the possible network structures it can create.

A näıve Bayes classifier has a fixed structure; only parameters can be learned. TAN

classifier builds a classifier network using dependency analysis based on calculation of

the mutual information among attribute variables. Our approach uses search and scoring

for construction of Bayesian network classifiers. However, we also make use of mutual

information to partially limit the domain of search and enhance algorithms’ performance.
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Figure 7.1:Family of the new Bayesian network classifiers with their relation to naı̈ve

Bayes and TAN classifiers. The new algorithms are represented in color, the

old in black.

Fig. 7.1 depicts richness of structures produced by each of the algorithms in our fam-

ily and their relationship to naı̈ve Bayes and TAN classifiers. Each algorithm performs a

heuristic search through its domain of network structures. The heuristic can be modified

by using different structure scoring measures. The search algorithms and quality measures

we use are described in the remainder of this chapter.

Each of the search algorithms is created from algorithm primitives that we calloper-

ators. By combining our operators we can produce any of the Bayesian network learning

algorithms presented in Fig. 7.1, including naı̈ve Bayes and TAN. We estimate the com-

plexity of each of the operators and show how to combine them to build network search

algorithms.

Presentation of quality measures, that are used for scoring models found by the search

algorithms, is proceeded by discussion of learning network parameters and inference op-

timization. The chapter ends with a summary of complexity of complete algorithms for
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learning Bayesian network classifiers and discussion of the discretization of continuous

variables. Empirical evaluation of performance of the new family of Bayesian network

classifiers is presented in Chapter 8.

Notation

The following notation will be used in this chapter.

B – Bayesian network over random variables{X1, . . . , Xn}, B = 〈S, θ〉.

S – directed acyclic graph representing structure of a Bayesian network.

θ – parameters of a Bayesian network.

Xi – discrete variable havingri possible configurations{x(1)
i , . . . , x

(ri)
i }.

Pai – set ofρ parents of variableXi, {pai1, . . . ,paiρ}, havingqi possible configurations

{pa(1)
i , . . . , pa(qi)

i }.

C – the class variable. We use a convention whereC ≡ Xn.

A – set of attribute variables{A1, . . . , An−1}. We use convention whereAi ≡ Xi for

i = 1, . . . , n− 1.

γ – set of attributes dependent on the class variableC.

λ – set of attributes independent from the class variableC.

‖X‖ – cardinality, number of elements, of setX.

D – set of training cases, random samples (no missing values).

N – number of training cases (‖D‖ = N ).

Nijk – number of cases inD where the random variableXi is in configurationk and and

its parents,Pai, are in configurationj.
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Algorithm 7.1 Class dependency creation operator.

CLASS-DEPEND(S, γ,D)

1. Ŝ ← S

2. for each variableγi ∈ γ do

3. Add directed edge(C 7→ γi) to structure network̂S

4. return Ŝ

Nij – number of cases inD where parents of the random variableXi are in configuration

j, Nij =
∑ri

k=1 Nijk.

q(S,D) – Bayesian network structure quality function. The higher the value ofq the better

structureS models training data setD.

7.1 Search Operators

7.1.1 Class Dependency Creation Operator

We start by presenting a simple utility operator that extends network structureS by adding

to it dependencies between the class nodeC and attribute nodes in setγ. This operator is

utilized by some of the search operators, and can be directly used to create a structure of a

näıve Bayes classifier. The operators algorithm is presented in Alg. 7.1.

Numerical Complexity

Numerical complexity of the CLASS-DEPENDoperator:

OCLASS-DEPEND = ‖γ‖. (7.1)

where‖γ‖ is the cardinality of setγ.
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Algorithm 7.2 SAN class dependency discovery operator.

SAN(D, q, AUGMENTER)

1. γ ← ∅ {set of attributes dependent on the class variable}

2. λ ← A = {A1, . . . , An−1} {set of attributes independent from the class variable}

3. q̂ ← −∞ {highest value of quality measure so far}

4. for i = 1, . . . , n− 1 do

5. Select an attributeA ∈ λ that maximizes quality measureq(B,D)

where networkB ← AUGMENTER(γ ∪ {A}, λ \ {A}, D, q)

6. if q(B,D) > q̂ then

7. B̂ ← B

8. q̂ ← q(B,D)

9. γ ← γ ∪ {A}

10. λ ← λ \ {A}

11. return B̂

7.1.2 SAN Dependency Discovery Operator

The first search operator introduced is calledSelective Augmented Naı̈ve Bayes(SAN).

This operator discovers dependencies between the class variableC and attribute variables

Ai. If all of the attributes depended on the class variable, then, the Bayesian network would

have the structure of an augmented naı̈ve Bayes classifier (for instance TAN). However, the

task of SAN is to determine which of these dependencies are actually needed. Additionally,

at each step, SAN augments the discovered structure of dependencies between the class

variable and attribute variables by application of the operator AUGMENTER. The SAN

algorithm is presented in Alg. 7.2.

The SAN operator performs a greedy search of possible edges from the class variable

C to attribute variablesA. It starts with an empty set of children and, at each step, adds a

new child that is optimal according to network structure quality measureq. The children
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of nodeC are elements of setγ, while setλ contains these attribute variables that are

not directly dependent onC. For each configuration of children,γi, dependencies among

attribute variablesA are determined by a suitably chosen operator AUGMENTER. The

AUGMENTER operator takes as an input dependencies between the class variableC and

attribute variablesA, represented by setγi−1 ∪ {X}, and learns additional dependencies

among attribute variablesA using the set of training casesD. SAN selects the network that

corresponds to configuration of childrenλk with the highest score according to the quality

measureq.

Numerical Complexity

Numerical complexity of the SAN operator depends partially on the numerical complexity

of the measureq used to evaluate the quality of created network,Oq, and on the numerical

complexity of the AUGMENTER operator,OAUGMENTER.

Complexity of steps 1 to 3 is constant. Complexity of step 5 is‖λ‖ · (Oq +OAUGMENTER).

Remaining steps in thefor loop have constant complexity. The loop is repeatedn−1 times.

Thus the complexity of the SAN operator is

OSAN = n2 · (Oq + OAUGMENTER). (7.2)

7.1.3 SAND Dependency Discovery Operator

OperatorSelective Augmented Naı̈ve Bayes with Discarding(SAND) is similar to operator

SAN. It discovers dependencies between the class variableC and attribute variablesAi.

Unlike SAN, however, operator SAND discards attributes that are not determined to be

dependent on the class variable before applying the AUGMENTERoperator. In effect, oper-

ator the SAND performs attribute selection, determines which attributes do not contribute

to the classification goal, and discards them from the classification network. The difference

between networks produced by SAN and SAND is illustrated in Fig. 7.2. This figure as-
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(b) SAND

Figure 7.2:Examples of networks produced by SAN and SAND operators.

sumes that a tree augmentation is used (see the very next section). The pseudo-code for the

SAND algorithm is presented in Alg. 7.3.

Numerical Complexity

Numerical complexity of the SAND operator is the same as the numerical complexity of

SAN:

OSAND = n2 · (Oq + OAUGMENTER). (7.3)

7.1.4 Tree-Augmenting Operator

The tree-augmenting operator, TREE-AUGMENTER, is a generalization of the tree-aug-

mented näıve Bayes classifier, TAN, discussed in (Friedman et al., 1997). The difference

is that, unlike TAN, we do not require that all of the attribute nodes depend on the class

variableC. Operandγ specifies attributes that do depend on the class variable, operandλ

specifies additional attributes for augmentation that do not depend on the class node. The

tree-augmenting operator working is presented in Alg. 7.4.

The operator builds the augmenting tree using an extension of algorithm proposed

by (Chow and Liu, 1968), see also Section 5.4.3. The difference is in the way the mutual

information function is computed. Since some of the nodes depend on the class variable
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Algorithm 7.3 SAND class dependency discovery operator.

SAND(D, q, AUGMENTER)

1. γ ← ∅ {set of attributes dependent on the class variable}

2. λ ← A = {A1, . . . , An−1} {set of attributes independent from the class variable}

3. q̂ ← −∞ {highest value of quality measure so far}

4. for i = 1, . . . , n− 1 do

5. Select attributeA ∈ λ that maximizes quality measureq(B,D)

where networkB ← AUGMENTER(γ ∪ {A}, ∅, D)

6. if q(B,D) > q̂ then

7. B̂ ← B

8. q̂ ← q(B,D)

9. γ ← γ ∪ {A}

10. λ ← λ \ {A}

11. return B̂

we use this information while computing conditional mutual information. The following

formula is using conditional (on class variableC) or unconditional probability of variables

X andY depending whether they are members of setγ or not:

Iγ(X; Y ) =



∑
x,y

p(x, y|c) · log
p(x, y|c)

p(x|c)p(y|c)
if X ∈ γ ∧ Y ∈ γ,

∑
x,y

p(x, y|c) · log
p(x, y|c)

p(x|c)p(y)
if X ∈ γ ∧ Y /∈ γ,

∑
x,y

p(x, y|c) · log
p(x, y|c)

p(x)p(y|c)
if X /∈ γ ∧ Y ∈ γ,

∑
x,y

p(x, y) · log
p(x, y)

p(x)p(y)
if X /∈ γ ∧ Y /∈ γ.

(7.4)

Numerical Complexity

The loop in step 2 is repeated1
2
‖γ ∪ λ‖(‖γ ∪ λ‖ − 1) times. Complexity of computing

the mutual information in step 3 depends on the number of states taken by attributesAi and
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Algorithm 7.4 Tree-augmenting operator.

TREE-AUGMENTER(γ, λ, D)

1. G ← ∅

2. for each pair of variables{Ai, Aj} ⊂ γ ∪ λ such thatAi 6= Aj do

3. wij ← Iγ(Ai; Aj)

4. Add undirected edge(Ai − Aj) to graph G

5. T ← MAXIMUM -SPANNING-TREE(G, w)

6. Order edges in undirected treeT by choosing one node as the root and setting

the direction of all edges to be outward from it, then convert it to Bayesian network

structureS

7. B̂ ← CLASS-DEPEND(S, γ,D)

8. return B̂

Aj. Assume that the maximum number of possible states inrMAX then the complexity of

step 3 isr2
max, and complexity of the loop in step 2 is

O2 = ‖γ ∪ λ‖2 · r2
max.

We assume here that the maximum spanning tree algorithm is implemented using Prim’s

algorithm (Cormen et al., 1990). Complexity of the Prim’s algorithm implemented using

Fibonacci heaps isE + V log V whereE is the number of edges andV is the number of

vertices in graphG. In our caseE = 1
2
‖γ ∪ λ‖(‖γ ∪ λ‖ − 1) andV = ‖γ ∪ λ‖.

O5 = O

(
1

2
‖γ ∪ λ‖(‖γ ∪ λ‖ − 1) + ‖γ ∪ λ‖ log (‖γ ∪ λ‖)

)
= ‖γ ∪ λ‖2

O6 = ‖γ ∪ λ‖2

O7 = ‖γ‖

O2 + O5 + O6 + O7 = O
(
‖γ ∪ λ‖2 · r2

max

)
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Hence the complexity of the tree-augmenting operator is

OTREE-AUGMENTER = ‖γ ∪ λ‖2 · r2
max. (7.5)

7.1.5 Forest-Augmenting Operator

The tree-augmenting operator, TREE-AUGMENTER, creates a path between each of the

nodes. This may create dependencies between variables in the model that are not re-

ally present. To alleviate this problem we introduce a forest-augmenting operator called

FOREST-AUGMENTER. It can create dependencies between variables in a form of a num-

ber of disjoint trees. It may also determine that there is no dependency between attributes

creating a näıve Bayes classifier; or that all of the nodes are connected by a single tree and

create the TAN classifier. An algorithm for learning Bayesian network classifiers based on

the FOREST-AUGMENTER operator can be more robust then either naı̈ve Bayes or TAN

algorithms. It can create not only naı̈ve Bayes or TAN network structure, but a number

of other, intermediate, classifier structures, thus having a better chance of finding optimal

approximation of the probability distribution of the class variable. The forest-augmenting

operator works as shown in Alg. 7.5.

The forest-augmenting algorithm utilizes a specific property of Kruskal’s maximum

spanning tree algorithm (Cormen et al., 1990). Kruskal’s algorithm builds the spanning tree

by adding legal edges in order of their decreasing weights. This way it maintains a graph

containing a forest of disjoint trees. The branches of these trees in the forest are clustered

by strongest dependency among the node variables. The FOREST-AUGMENTER operator

uses the way Kruskal’s algorithm was adding new edges as a heuristic for ”growing” a

forest of dependencies between argument nodes.

Kruskal’s maximum spanning tree algorithm

Kruskal’s maximum spanning tree algorithm is presented in Alg. 7.6. The algorithm makes

use of the following supporting operations for maintenance of disjoint-set data structures:
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Algorithm 7.5 Forest-augmenting operator.

FOREST-AUGMENTER(γ, λ, D, q)

1. G ← ∅

2. for each pair of attributes{Ai, Aj} ⊂ γ ∪ λ, such thatAi 6= Aj do

3. wij ← Iγ(Ai; Aj)

4. Add undirected edge(Ai − Aj) to graph G

5. T ← MST-KRUSKAL(G, w) {Kruskal’s maximum spanning tree}

6. Direct edges inT

7. E ← set of edges inT sorted in decreasing order according to weightsw

8. B ← CLASS-DEPEND(∅, γ,D)

9. q̂ ← −∞

10. for everyEi ∈ E, in order of decreasing weightsdo

11. Add edgeEi to networkB

12. if q(B,D) > q̂ then

13. q̂ ← q(B,D)

14. B̂ ← B

15. return B̂
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Algorithm 7.6 Kruskal’s algorithm for finding maximum spanning tree in a graph.

MST-KRUSKAL(G, w)

1. T ← ∅

2. for each vertexv ∈ V [G] do

3. MAKE-SET(v)

4. Sort the edges ofE by non-increasing weightw

5. for each edge(u, v) ∈ E, in order by non-increasing weightdo

6. if FIND-SET(u) 6= FIND-SET(v) then

7. T ← T ∪ {(u, v)}

8. UNION(u,v)

9. return T

MAKE-SET(x) creates a new set whose only member (and thus representative) is pointed

to byx. Since sets are disjoint, we require thatx not already be in a set.

UNION(x, y) unites the dynamic sets that containx andy, saySx andSy, into a new set that

is the union of these sets. The two sets are assumed to be disjoint prior to operation.

The representative of the resulting set is some member ofSx ∩ Sy, although many

implementations of UNION choose the representative of eitherSx or Sy as the new

representative. Since we require the sets in the collection to be disjoint, we ”destroy”

setsSx andSy, by removing them from the collectionS.

FIND-SET(x) returns a pointer to the representative of the (unique) set containingx.

MST-KRUSKAL algorithm builds the maximum spanning tree by performing a greedy

search, at each step adding to the structure asafeedge with highest weight. It maintains,

at each step, a forest of trees that eventually are joined into a single tree. The complexity

of MST-KRUSKAL is O(E log E), whereE is the number of edges (Cormen et al., 1990).

The fully connected graph hasV (V−1)
2

edges, whereV is the number of vertices in graph
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G. The complexity of Kruskal’s algorithm, in our case, isO(V 2 log V ).

Numerical Complexity of Forest-Augmenting Operator

The numerical complexity of the forest-augmenting operator can be estimated as follows.

O2 = ‖γ ∪ λ‖2 · r2
max

O5 = ‖γ ∪ λ‖2 log ‖γ ∪ λ‖

O6 = ‖γ ∪ λ‖

O8 = ‖γ‖

There are‖γ ∪ λ‖ − 1 edges in the maximum spanning tree, thus

O10 = O ((‖γ ∪ λ‖ − 1) ·Oq) = ‖γ ∪ λ‖ ·Oq

wereOq is the complexity of calculating quality measureq.

O2+O5 + O6 + O9 + O10 =

O
(
‖γ ∪ λ‖2 · r2

max + ‖γ ∪ λ‖2 · log ‖γ ∪ λ‖+ ‖γ ∪ λ‖ ·Oq

)
Hence the complexity of the forest-augmenting operator is

OFOREST-AUGMENTER = ‖γ ∪ λ‖2 · r2
max + ‖γ ∪ λ‖2 · log ‖γ ∪ λ‖+ ‖γ ∪ λ‖ ·Oq (7.6)

7.2 Search Algorithms

Using the five operators presented above we can create a family of search algorithms for

learning Bayesian network classifiers presented in Fig. 7.1. The computational complexity

of each of the algorithms in this family is summarized in Table 7.1. Notice that the first two

algorithms that are created using our operators are well known naı̈ve Bayes classifier (Duda

and Hart, 1973) and tree-augmented naı̈ve Bayes (Friedman et al., 1997). These two algo-

rithms do not perform an actual search, so their only argument is the training datasetD.

The remaining algorithms also take as an argument a network quality measureq.
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Table 7.1:Family of search algorithms for learning Bayesian network classifiers and

their complexity.

Algorithm Operator Composition Core Complexity

NAÏVE BAYES(D) CLASS-DEPEND(∅,A,D) n

TAN(D) TREE-AUGMENTER(A, ∅,D) n2 · r2
max

FAN(D, q) FOREST-AUGMENTER(A, ∅,D, q) n2 · r2
max + n2 · log n + n ·Oq

STAN(D, q) SAN(D, q, TREE-AUGMENTER) n4 · r2
max + n2 ·Oq

STAND(D, q) SAND(D, q, TREE-AUGMENTER) n4 · r2
max + n2 ·Oq

SFAN(D, q) SAN(D, q, FOREST-AUGMENTER)
(
n4r2

max + n4 log n + n3Oq

)
Oq

SFAND(D, q) SAND(D, q, FOREST-AUGMENTER)
(
n4r2

max + n4 log n + n3Oq

)
Oq

One of the hidden costs of all the algorithms presented here is the estimation of prob-

abilities, or strictly speaking frequenciesNijk, that are used for computation of mutual

information and determination of network parametersθ. They are constant for a given

training data setD. Thus, when running several different algorithms on the data set we

can improve the performance by pre-computing these frequencies and then passing them

to each of the algorithms. We will present the complexity of complete algorithms after we

introduce issues related to parameter learning, inference, and quality measures.

7.3 Learning Parameters

We have assumed that all variablesXi in the Bayesian networkB have unrestricted multi-

nomial distribution (if a dataset contains continuous variables it is discretized, as will be

described in Section 7.7). Each local distribution functionPi associated with variableXi

is a collection of multinomial distributionsPij, one distribution for each configuration of

parentsPai. We assume that

p(xk
i |paj

i , θi, S
h) = θijk > 0 (7.7)
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In other words,θijk denotes the probability that variableXi is in configurationk and its

parents are in configurationj. And that this probability is always greater than zero.

θi = ((θijk)
ri
k=2)

qi

j=1 denotes all the parameters associated with variableXi. Indexk

starts from2 since parametersθij1 can be calculated using

θij1 = 1−
ri∑

k=2

θijk.

Vector of parameters associated with each local distributionPij is denoted by

θij = {θij2, . . . , θijri
}

We will denote byri number of configurations of variableXi and byqi the number of

parent configurations of variableXi:

qi =
∏

Xp∈Pai

rp (7.8)

7.3.1 Parameter Estimation

The material presented in this subsection is based on (Heckerman, 1996). We present it

here to introduce some notions and assumptions about parameter probability distribution

that are used in the remainder of this chapter; in particular, parameter priors that are also

utilized by quality measures.

As stated in Section 5.3, problem of learning Bayesian network parameters given net-

work structure and training data setD is that of computing the posterior distribution

p(θ|D, Sh). The posterior distributionp(θ|D, Sh) can be efficiently computed in closed

form under two assumptions (Heckerman, 1996). The first assumption is that there are no

missing data in the training data setD. The second assumption is that parameter vectors

θij are mutually independent:

p(θ|Sh) =
n∏

i=1

qi∏
j=1

p(θij|Sh)
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Under assumption of complete data and parameter independence, the parameters remain

independent given the data setD:

p(θ|D, Sh) =
n∏

i=1

qi∏
j=1

p(θij|D, Sh)

This lets us update each vector of parameters independently.

We further assume that each vectorθij has a prior Dirichlet distribution

p(θij) = Dir(θij|αij1, . . . , αijri
) ≡ Γ(αij)∏ri

k=1 Γ(αijk)

ri∏
k=1

θ
αijk−1

ijk (7.9)

where αij =
∑ri

k=1 αijk and aijk > 0. Since Dirichlet distribution is the conjugate prior

to multinomial distribution we have

p(θij|D, Sh) = Dir(θij|αij1 + Nij1, . . . , αijri
+ Nijri

) (7.10)

whereNijk is the number of cases inD in which variableXi is in configurationk, Xi = xk
i ,

and parents ofXi are in configurationj, Pai = paj
i .

Given the data setD and network structureSh we can estimate parametersθ by aver-

aging over all possible configurations ofθ. Using Eq. (7.7) we have that the probability of

a new unobserved casex(N+1)

p(x(N+1)|D, Sh) = Ep(θ|D,Sh)

(
n∏

i=1

θijk

)
where E denotes expected value. From the assumption of parameter independence, given

data setD

p(x(N+1)|D, Sh) =

∫ N∏
i=1

θijk p(θ|D, Sh) dθ =
N∏

i=1

∫
θijk p(θij|D, Sh) dθij

From Eq. (7.10) and properties of Dirichlet distribution we can estimate parametersθijk as

follows (Heckerman, 1996)

p(x(N+1)|D, Sh) =
n∏

i=1

θ̄ijk =
n∏

i=1

αijk + Nijk

αij + Nij

(7.11)

whereNij =
∑ri

k=1 Nijk.
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7.3.2 Selection of Priors

Selection of priors, or in our case Dirichlet prior parametersαijk, is a very important and

difficult problem. Priors enable us to encode prior knowledge about the problem domain.

They can be used to improve generalization properties of networks with empirically esti-

mated parameters. Sizable research effort is devoted to selection of priors. However, we

opt here for a relatively simple solution.

Cooper and Herskovits (1992) in their work on the K2 Bayesian network learning al-

gorithm suggested a simple uniform assignmentαijk = 1. Buntine (1991b) suggested the

uniform assignment that is dependent on the number of the variable configurations and

number of configurations of its parentsαijk = α
ri·qi

. We assume that all parametersαijk are

equal, and make an arbitrary assumption that their values are in range{0, . . . , 9}1 . There

is no particular reason for making this second assumption other than it gives a manageable

number of values. While creating a network we test each of these values and select one that

seems to be optimal for particular data set (based on experiments).

7.3.3 Numerical Complexity

Assuming that learning parameters includes computation of frequenciesNijk from the data

setD its numerical complexity is

OLEARN-PARAM = n · r%
max ·N (7.12)

wherermax is the maximum number of states of each variable in the network, and% is the

maximum number of parents of each node in the network.

Notice that we can conclude from Eq. (7.12) that controlling the number of parents

of each variable helps prevent combinatoric explosion in the complexity of learning algo-

rithms. If there was no restriction on the number of parents then the complexity of learning
1Strictly speaking we do not use value0 for αijk, but a small positive number close to zero. So that the

assumption given by formula (7.7) is always satisfied.
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would be more then exponential with the number of nodes in the network:

OLEARN-PARAM = n · rn
max ·N.

It is our intention that the algorithms presented in this chapter do not produce networks

that have more then two parents for each node so that the numerical complexity of learning

parameters is

OLEARN-PARAM = n · r2
max ·N (7.13)

7.4 Inference

In this section we demonstrate that we can perform very efficient inference in our family

of classifiers applying directly formula in Eq. (5.5). This is significant since it allows for a

low computational complexity of inference, that is linear with the number of variablesn.

As stated in Section 5.2: in general, direct application of Eq. (5.5) is not possible, and

the inference problem is NP-complete (complexity increases exponentially with number of

variablesn). Some of the quality measures, presented later in this chapter, use inference in

network they are scoring, thus lower complexity of inference means lower complexity of

algorithms that use those quality measures.

We can utilize specifics of the structure of networks created by algorithms introduced

in the previous section, in particular, that the class node has no parents. When a Bayesian

network is used as a classifier we are interested in the probability of the class node state

given the values of the attribute nodes states. All attributes are instantiated during the

evaluation. The joint probability distribution of a classifier network is

p(x) = p(a1, . . . , an−1, c)

whereai are values of the attribute nodes, andc is the value of the class node.
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Using Eq. (5.3) we can express the probability distribution represented by a classifier

network as:

p(a1, . . . , an−1, c) =
n−1∏
i=1

p(ai|paai
) · p(c|pac) = p(c)

n−1∏
i=1

p(ai|paai
)

p(c|pac) = p(c) since, in the networks built by our classifiers, the class node has no

parents.

Assume that the goal of our inference is to determine the probability that the class node

is in statek given states of attribute nodesa1, . . . , an−1. Using Eq. (5.5) and replacing

integration by a sum (variables in our networks have multinomial distributions) we have

p(c(k)|a1, . . . , an−1) =

p(c(k))
n−1∏
i=1

p(ai|paai
)

rc∑
j=1

[
p(c(j))

n−1∏
i=1

p(ai|paai
)

]

p(c(k)|a1, . . . , an−1) =
1

rc∑
j=1
j 6=k

[
p(c(j))

n−1∏
i=1

p(ai|paai
)

] (7.14)

The above formula can be directly used for inference since for each term of the sum in the

denominator, all of the variables are instantiated:C = c(j), andAi = ai for i = 1, . . . , n−1.

Numerical Complexity

Numerical complexity of performing inference using formula (7.14) is

OINFERENCE = n · rmax. (7.15)

7.5 Quality Measures

Choice of a quality measure is crucial for achieving high performance of a Bayesian net-

work classifier learning algorithm. We argue, as stated in Chapter 6, that local measures,
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that evaluate network at the class node, rather then global measures, that evaluate the com-

plete network without distinction for any particular node, are better suited for creation of

classifiers. We will test it empirically in Chapter 8. We will evaluate the performance of

Bayesian network classifier search algorithms using five quality measures presented in this

section. The first two are global Bayesian quality measures. The last three are local quality

measures.

Computation of a Bayesian network quality measure is associated with a specific nu-

meric cost. It may significantly increase the overall complexity of classifier learning algo-

rithm. For each of the presented measures, we also estimate its numerical complexity.

7.5.1 HGC – Heckerman-Geiger-Chickering Measure

This global Bayesian network quality measure is based on accessing the posterior proba-

bility of the network structure given the training data setD. It was proposed by Heckerman

et al. (1995) and calledBayesian Dirichletmetric. We will refer to it as HGC (from the last

names of the authors)

QHGC = log p(D, Sh)

= log p(S) +
n∑

i=1

[
qi∑

j=1

[
log

Γ(αij)

Γ(αij + Nij)
+

ri∑
k=1

log
Γ(αijk + Nijk)

Γ(αijk)

]]
(7.16)

whereΓ is the gamma function:

Γ(z) =

∫ ∞

0

tz−1e−tdt.

In our implementation we use Lonczos’ approximation of functionlog Γ(z) (Press et al.,

1992). We use logarithm ofΓ(z) sinceΓ is a fast increasing function and can cause nu-

merical overflow even for moderate values ofz. The Lonczos’ approximation has constant

complexity.

Frequently, prior structure probabilityp(S) is unknown and assumed to be constant
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over all possibleS. The HGS measure can be rewritten as follows.

QHGC =
n∑

i=1

[
qi∑

j=1

[
log Γ(αij)− log Γ(αij + Nij) +

ri∑
k=1

log Γ(αijk + Nijk)− log Γ(αijk)

]]

QHGC =
n∑

i=1

qi∑
j=1

[log Γ(αij)− log Γ(αij + Nij)] +

n∑
i=1

qi∑
j=1

ri∑
k=1

[log Γ(αijk + Nijk)− log Γ(αijk)]

(7.17)

Numerical Complexity

We assume that frequenciesNijk are pre-computed; they do not need to be calculated sep-

arately for each evaluation of HGC. Maximum value ofqi in Eq. (7.17) isr%
max. Thus,

complexity of computing the HGC measure is

OHGC = n · r%+1
max. (7.18)

7.5.2 SB – Standard Bayesian Measure

HGC measure rewards for good approximation of the joint probability distribution. It may

naturally prefer larger networks, since larger number of parameters allows for better fit.

However if the number of parameters is too large, overfitting to training data set occurs,

and the constructed network may have poor generalization properties.

It may be beneficial to prefer smaller networks. Since that may result in better gener-

alization properties. In a smaller network there are fewer parameters and variance of their

estimation from the training data will be smaller. Size of the Bayesian network can be

computed using the following definition (Castillo et al., 1997).

Dimension of a Bayesian NetworkLet X be a set of random variables

andB be a Bayesian network defined overX. The dimension of this network,
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Dim(B), is the number of free parameters required to completely specify the

joint probability distribution ofX.

Dim(B) can be computed as follows:

Dim(B) =
n∑

i=0

(ri − 1) qi =
n∑

i=0

(ri − 1)
∏

Xp∈Pai

rp. (7.19)

Castillo et al. (1997) presented a global Bayesian measure that is proportional to the

posterior probability distributionp(S, θ|D) with an added penalty term for the network

size. They call itStandard Bayesianmeasure. Below is a simplified derivation. We include

it here since it makes some assumptions that are less common among other authors that

typically follow approach presented in Section 7.3.1. The main difference is in the way

network parameters are estimated.

Posterior probability of the networkB given training samplesD:

p(B|D) = p(S, θ|D) =
p(S, θ,D)

p(D)
(7.20)

Since that data setD is the same for the networks that are compared (p(D) is constant) then:

p(S, θ|D) ∝ p(S, θ,D) = p(S)p(θ|S)p(D|S, θ) (7.21)

The Standard Bayesian measure or SB is given by formula:

QB(B(θ), S) = log p(S) + log p(θ̂|S) + log p(D|S, θ̂)− 1

2
Dim(B) log N (7.22)

Castillo et al. (1997, p.494) assume thatθ̂ is the following posterior mode ofθ

θ̂ = arg max
θ

log p(θ|S,D) (7.23)

Assuming that all variables in the network have multinomial distribution we have

p(θ|S) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
αijk−1

ijk (7.24)

p(D|S, θ) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk (7.25)
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θ̂ijk =
αijk + Nijk − 1

αij + Nij − ri

(7.26)

If we assume, as before, thatp(S) is constant then we have the following formula for

the standard Bayesian measure for multinomial distribution:

QSB(B,D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

(Nijk + αijk − 1) log
Nijk + αijk − 1

Nij + αij − ri

− 1

2
Dim(B) log N.

(7.27)

Numerical Complexity

As before we assume that frequenciesNijk are pre-computed. The numerical complexity of

computing the Standard Bayesian measure is the same as the complexity of HGS measure:

OSB = n · r%+1
max. (7.28)

7.5.3 LC – Local Criterion Measure

Spiegelhalter, David, Lauritzen, and Cowell (1993) suggested the following local criterion

measure that could be more adequate for construction of classifiers than global quality

measures:

LC(Sh,D) =
N∑

l=1

log p(c(l)|a(l),D(l), Sh) (7.29)

where indexl represents thelth training case,c(l) is value of the class variable anda(l) is

the configuration of attributes in thelth case.D(l) = {x(1), . . . , x(l−1)}.

The modelS is trained sequentially with the firstl − 1 cases, then tested with thelth

case. This is a form of cross-validation where the training and testing cases are never

interchanged. This measure can be interpreted as a local version of the global Bayesian

measure HGC.
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Numerical Complexity

There areN operations of parameter learning and inference with these new parameters.

Frequencies can be calculated cumulatively reducing complexity of learning parameters:

O (N · n · rmax + N · n · r%
max)

Thus numerical complexity of the LC measure is

OLC = N · n · r%
max (7.30)

7.5.4 LOO – Leave-One-Out Cross Validation

Let Vl represent the training data setD with thelth instance removed:

Vl = D \ {x(l)} = {x(1), . . . ,x(l−1),x(l+1), . . . ,x(n)} (7.31)

Global Leave-One-Out Cross Validation Measure

The globalleave-one-outcross validation criterion can be defined as

LOOglobal(S
h,D) =

N∑
l=1

log p(x(l)|Vl, S
h) (7.32)

Heckerman (1996) argues that this criterion is less fit for grading models than the HGC

criterion (Eq. 7.16). He follows the argument of David (1894) that LOOglobal criterion

overfits the model to the data. In LOOglobal training and testing cases are interchanged. It

is not the case with theQHGC criterion:

QHGC = log p(D, Sh) = log p(Sh) + log p(D|Sh)

= log p(Sh) +
N∑

l=1

log p(x(l)|x(1), . . . ,x(l−1), Sh)

Notice that the last term in the above equation is similar to terms in Eq. (7.32). However the

term in the above equation represents incremental predictionsp(x(l)|x(1), . . . ,x(l−1), Sh)

without mixing the training set and the testing set (training set is being incrementally en-

larged).
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Local Leave-One-Out Cross Validation

The LOOglobal measure given by Eq. (7.32) is not suitable for classification since it tests

the joint distributionp(x). We can modify it to test the marginal probability of the class

variableC given configuration of attributesA:

LOO(Sh,D) =
N∑

l=1

p(c(l)|a(l),Vl, S
h) (7.33)

Notice that this measure is very similar to the local criterion measure LC given by Eq. (7.29).

The above Heckerman’s argument may be also applied to comparing local LOO with LC.

Numerical Complexity

Two components contribute to complexity of evaluating LOO: inference performed to eval-

uate conditional probability of the class variable and learning of Bayesian network param-

eters. The training data setVl is changedN times during the evaluation LOO. This requires

that network parametersθ be estimatedN times, for eachVl separately. A straightforward

implementation of LOO would then lead to following complexity:

O (N · (n · r%
max ·N + n · rmax)) = n · r%

max ·N2

Careful implementation through, by temporally modifying the frequencies, may im-

prove the complexity. Instead of recalculating all of the frequencies for every data setVl

we can modify the frequencies for data setD depending which case is currently removed

from it. This may lead to more messy implementation, but can significantly improve the

complexity, especially for large data sets:

OLOO = O (N · (n · r%
max + n · rmax)) = n · r%

max ·N (7.34)

7.5.5 CVφ,τ – φ-Fold τ -Times Cross Validation

During φ-fold cross validation, data setD is split intoφ pairs of setsVi andWi. Data set

Vl is used for training and data setWl for testing. For eachi = 1, . . . , φ we have that
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Vi ∪Wi = D and the cardinality of the setWi is approximately oneφth of the cardinality

of the setD:

‖Wi‖ ≈
1

φ
‖D‖.

Theφ-fold cross validation is repeatedτ times and the results are averaged. This defines

following quality measure:

CVφ,τ (S
h,D) =

τ∑
j=1

φ∑
i=1

‖Wi‖∑
l=1

log p(cl|a(l),V(j)
i , Sh) (7.35)

Note that if we setφ = ‖D‖ andτ = 1 then measure CVφ,τ is the same as measure LOO.

Typically, however,φ andτ are set constant and independent from the size of data setD.

Numerical Complexity

As in the case of LOO, the complexity depends on parameter learning and inference. How-

ever, now parameter learning can be less frequent than evaluation (forφ < N )

O

(
τ · φ ·

(
n · r%

max ·N
φ− 1

φ

)
+ τ · φ · N

φ
· (n · rmax)

)
Thus, the complexity of the cross validation measure CVφ,τ is

OCVφ,τ
= τ · φ · n · r%

max ·N. (7.36)

For example, for 10-times 10-fold cross validation and the network with no more than two

parents for each node the complexity would be

OCV10,10 = n · r2
max ·N.

7.6 Complexity of Complete Learning Algorithms

Now, we are ready to combine structure search, parameter learning, inference, and quality

measures presented in previous sections to create a new family of complete algorithms for
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learning Bayesian network classifiers. Table 7.2 presents estimation of complexity for each

of the algorithms in the family.

Derivation of these estimates is presented below. To simplify the final formulas, we

will assume that the number of variablesn is approximately equal to the maximum number

of variable configurationsrmax, n ≈ rmax and thatn is much smaller than the number of

casesN in the training data set,n� N .

Näıve Bayes

Näıve Bayes classifier does not perform a search, so its total complexity is its core com-

plexity (see Table 7.1) plus the complexity of learning parameters given by Eq. (7.12)

ONAÏVE BAYES = O (n + n · rmax ·N) = n · rmax ·N

≈ n2 ·N

Tree Augmented Näıve Bayes

TAN does not perform search thus,

OTAN = O
(
n2 · r2

max + n · r2
max ·N

)
= n · r2

max · (n + N)

≈ n3 ·N

Forest Augmented Näıve Bayes

Complexity of the Heckerman-Geiger-Chickering and the Standard Bayes quality measure

are the same:

OFAN-HGC = OFAN-SB = O
(
n2 · r2

max + n2 · log n + n · (n · r3
max) + n · r2

max ·N
)

= n2 · log n + n2 · r3
max + n · r2

max ·N

≈ n3 ·N
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FAN classifier with either leave-one-out cross validation or local criterion quality measure:

OFAN-LOO = OFAN-LC = O
(
n2 · r2

max + n2 · log n + n · (n · r2
max ·N) + n · r2

max ·N
)

= n2 · log n + n2 · r2
max ·N + n · r2

max ·N

≈ n4 ·N

FAN classifier withφ-folds τ -times cross validation quality measure:

OFAN-CVφ,τ
= O

(
n2 · r2

max + n2 · log n + n · (φ · τ · n · r2
max ·N) + n · r2

max ·N
)

= n2 · log n + φ · τ · n2 · r2
max ·N + n · r2

max ·N

≈ φ · τ · n4 ·N

If we assume thatφ andτ are constant and equal 10 then

OFAN-CV10,10 ≈ n4 ·N

STAN and STAND Classifiers

Numerical complexity of STAN and STAND is the same, so will derive complexity only

for the STAN classifier.

OSTAN-HGC = OSTAN-SB = O
(
n4 · r2

max + n2 · (n · r3
max) + n · r2

max ·N
)

= n4 · r2
max + n3 · r3

max + n · r2
max ·N

≈ n3 ·N

OSTAN-LOO = OSTAN-LC = O
(
n4 · r2

max + n2 · (n · r2
max ·N) + n · r2

max ·N
)

= n4 · r2
max + n3 · r2

max ·N

≈ n5 ·N

OSTAN-CVφ,τ
= O

(
n4 · r2

max + n2 · (φ · τ · n · r2
max ·N) + n · r2

max ·N
)

= n4 · r2
max + φ · τ · n3 · r2

max ·N

≈ φ · τ · n5 ·N
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If we assume thatφ andτ are constant and equal 10 then

OSTAN-CV10,10 ≈ n4 ·N

SFAN and SFAND Classifiers

Numerical complexity of SFAN and SFAND is the same, so will derive complexity only

for the SFAN classifier.

OSFAN-HGC = OSFAN-SB

= O
((

n4r2
max + n4 log n + n3 · (n · r3

max)
)
·
(
n · r3

max

)
+ n · r2

max ·N
)

= n5r6
max + n5r3

max log n + n · r2
max ·N

≈ n3 ·N

OSFAN-LOO = OSFAN-LC

= O
((

n4r2
max + n4 log n + n3(nr2

maxN)
) (

nr2
maxN

)
+ nr2

maxN
)

= n5r4
maxN + n5r2

maxN log n + n6r4
maxN

2 + n · r2
max ·N

≈ n10 ·N2

OSFAN-CVφ,τ
= O

((
n4r2

max + n4 log n + n3(φτnr2
maxN)

) (
φτnr2

maxN
)

+ nr2
maxN

)
= n5r4

maxN + n5r2
maxN log n + φτn6r4

maxN
2 + n · r2

max ·N

≈ φ · τ · n10 ·N2

If we assume thatφ andτ are constant and equal 10 then

OSFAN-CV10,10 ≈ n10 ·N2

7.7 Discretization

Discretization is a process in which a continuous scalar variable is replaced by a finite

number of labels. A discretization algorithm first divides the domain of a continuous vari-
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Table 7.2:Estimated complexity of algorithms for learning Bayesian network classifiers:

combination of search algorithms and quality measures.

Without With Quality Measure
Algorithm

Quality Measure HGC, SB LC, LOO CVφ,τ CV10,10

NAÏVE BAYES(D) n2 ·N · · · ·

TAN(D) n3 ·N · · · ·

FAN(D, q) · n3 ·N n4 ·N φ · τ · n4 ·N n4 ·N

STAN(D, q) · n3 ·N n5 ·N φ · τ · n5 ·N n5 ·N

STAND(D, q) · n3 ·N n5 ·N φ · τ · n5 ·N n5 ·N

SFAN(D, q) · n3 ·N n10 ·N2 φ · τ · n10 ·N2 n10 ·N2

SFAND(D, q) · n3 ·N n10 ·N2 φ · τ · n10 ·N2 n10 ·N2

able into a finite number of non-overlapping intervals that cover the whole domain, then

replaces each instance of the variable by a label corresponding to an interval that contains

the value of that instance.

Some popular inducers have a discretization build-in (Quinlan, 1993; Holte, 1993;

Maass, 1994; Auer, Holte, and Maass, 1995). Typically, it is a matter of algorithm im-

plementation rather than an intrinsic feature of the algorithm. A “natural” way of dealing

with continuous attributes in Bayesian networks would be to use continuous distribution for

variables. However, there is no distribution that can handle a continuous variables as well

as a multinomial distribution can handle discrete variables. A naı̈ve Bayes inducer models

continuous variables using normal distribution. Many practical variables, and in particular

ones considered in this work, cannot be sufficiently well modelled by normal distribution or

multivariate-normal distribution. Multivariate-normal distribution is popular primarily due

to its nice mathematical properties – it is a member ofexponential familyof distributions;

not because it is well suited to model real life probability distributions.

Friedman, Goldszmidt, and Lee (1998) unsuccessfully attempted to extend their tree-

augmented naı̈ve Bayes algorithm, TAN (Friedman et al., 1997), to be able to directly
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handle continuous attributes. They used normal distributions and mixtures of normal dis-

tributions to create a continuous version of the TAN. Results they obtained indicate no

improvement in classification of data sets with continuous variables.

Dougherty, Kahavi, and Sahami (1995) reported research that compares a number of

discretization methods. They demonstrate, using data sets from UCI Machine Learning

repository (Blake et al., 1998), that performance of continuous a naı̈ve Bayes inducer can

be significantly improved by discretizing the data sets and using a discrete version of naı̈ve

Bayes. The best discretization method reported by Dougherty et al. (1995) is aminimal

entropyheuristic presented in (Catlett, 1991) and (Fayyad and Irani, 1993).

Bearing the above in mind, we decided to limit our new family of Bayesian network

classifiers algorithms to handle only discrete features. Motivated by research of Dougherty

et al. (1995), we use the minimal entropy heuristic for discretization of datasets with con-

tinuous features (the heuristic is described below in Section 7.7.1). We first discretize the

training dataset using the minimal entropy heuristic, then use the discovered discretization

scheme to discretize the test data.

7.7.1 Minimal Entropy Heuristic

For the convenience of the reader, this section provides a brief description of the minimal

entropy heuristic. In short, the heuristic performs recursive binary cuts of the domain of

a continuous attribute into intervals. Cutting of intervals continues till a stop criterion is

reached. Each attribute is discretized separately.

LetA denote an attribute for which the discretization is performed. Letω be an interval.

LetD be the dataset that is being discretized. We will denote byDω a subset ofD such that

values of attributeA for each case inDω are in intervalω:

Dω = {x(l) : x(l) ∈ D and a(l) ∈ ω}
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Theclass entropyof datasetDω is defined as:

Ent(Dω) = −
rc∑

k=1

P (ck|Dω) log2 P (ck|Dω) (7.37)

whererc is number of configurations of class variableC (number of classes).P (ck|Dω) is

the proportion of the number of cases inDω when a class variable is in configurationk to

the total number of cases inDω. Entropy Ent(Dω) measures the amount of information, in

bits, required to specify the classes inDω.

We initially assume that intervalω contains all possible values of attributeA, that is

ω = (−∞,∞). Intervalω is then recursively partitioned through binary cuts to establish

a set discretization intervals, or discretization bins. We will denote the set of discretization

bins byB.

Binary Cut

Let t ∈ ω denote a threshold value, acat point, for partitioning intervalω. Partitioning

creates two new intervals

ω1 = 〈a : a ∈ ω and a < t〉

ω2 = 〈a : a ∈ ω and a > t〉

This corresponds to partitioning the datasetDω into two datasetsDω1 andDω2 . Dataset

Dω1 contains these cases for which value of attributeA is less thent, DatasetDω2 contains

remaining cases inDω:

Dω1 = {x(l) : x(l) ∈ Dω and a(l) < t}

Dω2 = Dω \ Dω1

Fayyad and Irani (1993) define aclass information entropy of the partition induced by

t as:

E(A, t;Dω) =
‖Dω1‖
‖Dω‖

Ent(Dω1) +
‖Dω2‖
‖Dω‖

Ent(Dω2) (7.38)
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Optimal cut pointt̂ for partitioning intervalω is determined by minimizingE(A, t;Dω)

over all candidate cut pointst.

Note that the above minimization of the class information entropy is similar to heuristics

used for induction of decision trees by algorithms like ID3 (Quinlan, 1986), C4.5 (Quinlan,

1993), CART (Breiman, Friedman, Olshen, and Stone, 1984), or CN2 (Clark and Niblett,

1989).

“Cut or not to cut?”

To prevent indefinite recursive partitioning of created intervals, we need to decide whether

cutting of a particular interval is beneficial or not. It is a binary decision problem that

can be solved by Bayesian approach. LetHω be hypothesis that partitioning intervalω

using a binary cut, described above, would improve error rate of classifier that uses the

discretization. LetNω be a null hypothesis, that is the hypothesis that would result if the

partitioning ofω was rejected. For this decision problem, the Bayesian decision strategy is

to accept partitioning ofω when:

p(Hω|D) > p(Nω|D)

Unfortunately, there is no easy way to compute probabilitiesp(Hω|D) andp(Nω|D)

directly. Fayyad and Irani (1993) proposed to approximate these probabilities using Mini-

mum Description Length Principle (Rissanen, 1978). This led them to the following crite-

rion. Partitioning of intervalω is accepted if and only if

Gain(A, t;Dω) >
log2(‖Dω‖ − 1)

‖Dω‖
+

∆(A, t;Dω)

‖Dω‖
(7.39)

whereGain(A, t;Dω) is the information gain of the cut pointt:

Gain(A, t;Dω) = Ent(Dω) − ‖Dω1‖
‖Dω‖

Ent(Dω1) −
‖Dω2‖
‖Dω‖

Ent(Dω2) (7.40)

and

∆(A, t;Dω) = log2(3
rcω − 2)− [rcωEnt(Dω)− rcω1Ent(Dω1)− rcω2Ent(Dω2)] . (7.41)
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Algorithm 7.7 Minimal entropy discretization heuristic.

1. for every continuous attributeAi do

2. Pi ← PARTITION-INTERVAL ((−∞,∞), Ai, D)

Algorithm 7.8 Recursive minimal entropy interval partitioning.

PARTITION-INTERVAL(ω,A,D)

1. Dω ← {D(l) : D(l) ∈ D and a(l) ∈ ω}

2. Find cut pointt ∈ ω such thatE(A, t;Dω) is minimized.

3. if Gain(A, t,Dω) >
log(‖Dω‖ − 1)

‖Dω‖
+

∆(A, t;Dω)

‖Dω‖
then

4. ω1 ← 〈x : x ∈ ω andx < t〉

5. ω2 ← 〈x : x ∈ ω andx > t〉

6. B1 ← PARTITION-INTERVAL(ω1, A,D)

7. B2 ← PARTITION-INTERVAL(ω2, A,D)

8. B̂ ← B1 ∪ B2

9. else

10. B̂ ← {ω}

11. return B̂

In general, datasetDω may not contain examples for each possible configuration of class

variableC. The number of class variable configurations that have examples in data set

Dω is demoted byrcω. Similarly for datasetsDω1 andDω1, it is denoted byrcω1 andrcω1,

respectively.

The algorithm

A discretization algorithm based on the minimal entropy heuristic recursively partitions the

domain of each of the continuous attributes. Its working is demonstrated in Alg. 7.7 and

Alg. 7.8.



Chapter 8

Experimental Results

This chapter presents the results of four experiments. The first experiment used the categor-

ical data about left ventricular perfusion recorded by cardiologists to estimate the reference

error rate for classification based on features extracted from SPECT image. The next two

experiments use features extracted from 3D SPECT images to perform classification of the

left ventricular perfusion. The last experiment benchmarks our new family of Bayesian net-

work classifiers using datasets from the University of California at Irvine Machine Learning

Repository.

Generation of cross validation partition, used during experiments, and discretization of

continuous attributes (the minimal entropy heuristic) had been performed using MLC++

package (Kohavi, Sommerfield, and Dougherty, 1997). Note, each of the training parti-

tions was discretized separately, then the discovered scheme was used to discretize a cor-

responding test partition. MLC++ had been also used as a front end to C4.5 classifier.

Implementation of C4.5 classifier was the one provided with (Quinlan, 1993).

8.1 Perfusion Classification Error Reference Level

Figure 4.2 shows a simplified perfusion classification process that is deterministic and en-

tirely based on classification of perfusion in each of the regions of interest. It is reasonable

100
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to stipulate that in practice this classification is more complex, non-deterministic, and in-

volves a number of other factors that are not recorded in the database or are recorded only

imprecisely. Cardiologist’s interpretation process is, to a large, extent qualitative. The data

recorded in the database are, by their nature, quantitative. Intentionally, there is only a

limited number of codes that can be used to record perfusion. The intention is that this will

standardize the recording process by limiting the number of recorded defect codes, each

code having a clear description. This is ade factodiscretization process. A number of

cardiologists contributed to the database. Each of them may have a different bias how to

code that do not clearly belong to a single category. Also, interpretation of cardiac SPECT

images is complex and not an unambiguous process. There is a significant variability in

diagnosing of the same images between cardiologists (Cuaron et al., 1980). Additionally,

there is also some possibility of data errors present, eg. typos.

We use the perfusion classification recorded in the database by cardiologists as agolden

standardwhile constructing classifier based on features extracted from SPECT images. The

main objective of the experiment described in this section is to estimategoodnessof the

golden standard by estimating the perfusion classification error rate. In this experiment the

class variable will represent overall perfusion impression code recorded in the database.

The attributes will represent partial perfusion code recorded for each of the 22 regions of

interest presented in Fig. 4.1 and other information recorded in a study worksheet.

Note, that if classification of myocardial perfusion was completely deterministic, given

the classification within ROIs, then the reference classification error would be zero. Since

it is not, we wanted to estimate the perfusion classification error rate present in the golden

standard. This will help us to set a more realistic performance requirements for classifiers

that use only features extracted from SPECT images.

The secondary goal of this experiment is to see if some additional clinical information

that is recorded in the database, for instance, patient’s gender, weight, etc., may be useful

in perfusion classification. We want to determine whether additional patient information
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recorded in the database may improve classification error rate.

The experiment described here is an update to similar experiment described by us in

(Sacha et al., 2000). The current experiment uses newer database, larger by about 200

cases, and the new family of the Bayesian network classifier described in Chapter 7.

The upper boundary of the classification noise that is present in the database can be

estimated by constructing a number of classifiers and measuring their error rate using cross

validation. We used a C4.5 classifier (Quinlan, 1993), thirteen of the classifiers described in

Chapter 7, and the constant classifier1. We used only records that had no missing, incorrect,

or multiple values for considered attributes. Three sets of attributes were used to estimate

classification error level:

• Diagnosis by a cardiologist for each of the 22 regions of interests (Figure 4.1). We

refer to this 22 attribute set asCode22. Each of the attributes can take on seven

values which describe defect type, coded asNL - normal,F - fixed,R - reversible,P -

partially reversible,E - equivocal,X - reverse redistribution,ART - artifact. This set

has 1762 cases.

• A new dataset was obtained fromCode22 set by counting how many times each of

the defect codes were present within the 22 regions for a given case. These data

became a set of seven attributes taking on integer values from 0 to 22. Similarly to

theCode22 set, this set has 1762 cases. We refer to this data set asCount.

• Still another set was created using criteria such as relevance, completeness, and cor-

rectness of attribute values. This resulted in 16 attributes with a reasonably high num-

ber of corresponding entries in theCode22 data set. The following variables were
1The constant classifierpredicts a constant class - the majority class in the training set. This is the

simplest classifier that can be build. It is used to establish a base performance level. If no classifier can reach

performance better then the constant classifier it suggests that a dataset does not contain any information

useful for classification; a dataset contains only noise.
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Table 8.1:Summary of the estimation of reference classification error level using ten-

fold cross validation. The first number represents an error in percent; the

second is the standard deviation of the sample mean.

Data set
# attri-
butes

#
cases

Constant
classifier

C4.5
Discrete

naı̈ve
Bayes

TAN
Best new

BNC

Code22 22 1762 73.38±1.25 21.28± 1.04 20.94± 1.28 20.37±1.48 19.30±1.15
Count 7 1762 73.38±1.25 16.63±0.72 18.05± 0.98 17.82±0.99 17.59± 0.99
Extras 13 1619 73.44±0.74 66.89± 0.94 60.72± 0.83 60.22±1.29 59.85±1.01

Code22
& Extras

35 1619 73.44±0.74 22.54± 1.58 21.74± 1.09 20.45±0.92 19.64±0.77

Count &
Extras

20 1619 73.44±0.74 18.78± 0.85 17.66± 1.04 18.47±0.92 17.60±0.84

Code22
& Count

29 1762 73.38±1.25 17.54±0.90 19.69± 1.23 18.22±1.12 17.70± 1.07

Code22
& Count
& Extras

42 1619 73.44±0.74 18.53± 0.85 20.26± 0.98 17.91±0.91 17.66±0.87

Table 8.2:Estimation of reference classification error level using ten-fold cross valida-

tion and FAN classifier.

Code22 19.81 ± 1.54 19.64 ± 1.24 19.30 ± 1.15 19.58 ± 1.23 20.34 ± 1.13

Count 17.59 ± 0.99 17.93 ± 1.04 17.76 ± 1.04 17.65 ± 1.01 17.70 ± 1.01

Extras 60.53 ± 1.27 60.22 ± 0.86 60.47 ± 0.95 60.41 ± 0.94 60.41 ± 0.94

Code22 & Extras 20.57 ± 0.86 20.14 ± 0.96 20.38 ± 1.01 20.94 ± 0.81 21.19 ± 0.88

Count & Extras 18.10 ± 1.06 17.60 ± 0.84 17.60 ± 0.98 17.79 ± 0.97 17.66 ± 0.97

Code22 & Count 18.33 ± 1.27 17.93 ± 1.23 17.99 ± 1.31 17.76 ± 1.27 17.88 ± 1.30

Code22 & Count 

& Extras
19.02 ± 1.02 18.40 ± 0.80 18.28 ± 0.99 17.85 ± 0.85 18.03 ± 0.84

Dataset
HGC

FAN

SB LC LOO CV1010

selected: sex, age, height, weight, body surface area coefficient (BSA), diabetes mel-

litus, family history, HTN, smoker/non-smoker, chest pain, high cholesterol, prior

MI, and left ventricular size. This set has 1619 cases. We refer to it asExtras.

The first two sets contain only information from the interpretation of SPECT images. The

last one contains other attributes from patient records that might influence the diagnosis of

myocardial perfusion.

We used these sets of attributes and their combinations to build seven datasets:Code22,
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Table 8.3:Estimation of reference classification error level using ten-fold cross valida-

tion, STAN and STAND classifiers.

Code22 22.02 ± 1.15 35.75 ± 1.64 22.64 ± 1.12 19.97 ± 1.53 43.02 ± 1.14 20.43 ± 1.18

Count 17.82 ± 0.99 17.82 ± 0.99 17.82 ± 0.99 17.76 ± 1.00 17.76 ± 1.00 17.76 ± 0.94

Extras 59.85 ± 1.01 60.96 ± 1.21 59.35 ± 0.90 61.70 ± 0.96 62.87 ± 1.06 59.97 ± 1.13

Code22 & Extras 22.05 ± 1.19 26.13 ± 1.42 23.59 ± 0.98 19.64 ± 0.77 24.77 ± 1.01 20.81 ± 0.95

Count & Extras 18.47 ± 0.90 19.09 ± 1.26 18.03 ± 0.95 17.91 ± 1.05 17.60 ± 1.10 18.16 ± 1.13

Code22 & Count 21.51 ± 1.02 25.42 ± 0.98 19.69 ± 0.99 18.05 ± 1.08 19.01 ± 0.90 17.70 ± 1.07

Code22 & Count 

& Extras
21.62 ± 1.33 26.19 ± 1.40 19.64 ± 0.91 17.66 ± 0.87 19.15 ± 1.09 18.44 ± 0.92

STAN STAND

HGC SB LC
Dataset

HGC SB LC

Count, Extra, Code22 & Extra, Count & Extra, Code22 & Count, andCode22 & Count &

Extra. Then-fold cross validation has been used. The summary of the classification results

for these datasets is presented in Table 8.1. Results for selected new Bayesian network

classifiers (BNC) are presented in Tables 8.2 and 8.3. The first number is the mean cross-

validation classification error in percent, the second is the standard deviation of the mean2.

The following conclusions can be drawn from Table 8.1:

• The data seem to have relatively high classification noise. The lowest classification

error in the table is above 16%.

• Representation of the regional classification codes, theCount data set, seems to be

“easier” for learning.

• Additional attributes (Extras) contain some useful information for the classification.

The error rate for theExtras data set is high, however it is over 13% lower than that
2Experimental standard deviation of the meanof a samplex1, . . . , xφ:

σ(x̄) =

√√√√ 1
φ(1− φ)

φ∑
i=1

(x− x̄)2

wherex̄ = 1
φ

∑φ
i=1 xi is the experimental mean of the sample. The standard deviation of the mean is not the

standard deviation of the sample. It shows how variable the mean is, which is smaller than the variability of

the sample itself by a factor of samples’ size, see (Rice, 1988).
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Figure 8.1:Classification error as a function of number of attributes used for classifica-

tion for datasetCount & Extras.

of the constant classifier, suggesting that some of the attributes in theExtra data set

arecorrelated to the classification category.

• Classification using the extended data sets, i.e. regional information with added at-

tributes, suffers from increased classification error.

In our previous work, (Sacha et al., 2000), we studied the relation between number of

attributes selected for classification and the classification error. In particular, we studied

theCount & Extras dataset created from earlier version of database. That dataset contained

1,433 cases, only 11% less than the current one. The attributes were first ordered according

to their contribution to the classification goal based on analysis of classification rules gen-

erated by C4.5 classifier. As expected, attributes fromCount set ranked highest. We started

with a dataset that contained only one attribute, with the highest rank, and performed ten-

time cross validation test using C4.5 classifier. Then, we added the second attribute to the
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dataset and repeated the cross-validation test; and so on. The results are shown in Fig. 8.1.

These results agree with the one presented in Table 8.1: addition of extra attributes from

database that are not directly related to myocardial perfusion does not improve classifica-

tion results, and may actually increase the error. This is despite that Table 8.1 shows that

setExtras on its own contain information useful for classification. This is not a contradic-

tion. Larger number of attributes in the dataset means that a classifier needs to be described

by a larger number of parameters. As discussed in Chapter 7, if we keep the number of

cases in a training dataset constant and increase the number of parameters in a classifier,

the variance of estimation of the classifier parameters using that dataset increases. Each

of the parameters is estimated with a lower accuracy that may lead to a lower classifier

performance. There is usually some optimal tradeoff between the number of attributes in

the dataset and the classification error. This is well illustrated in Fig. 8.1. Around seven

attributes, for this particular dataset, seems to give the most optimal results. Based on these

results, in order to minimize parameter variance, we decided not to include attributes from

theExtras set in the remaining tests presented in this Chapter.

8.2 Partial Classification of Left Ventricular Perfusion

This section presents the core experimental results of this work. A partial classification

is performed in each of the twenty two 3D regions of interest (Section 4.1), for females

and males separately. We tested all of the Bayesian network classifiers presented in Chap-

ter 7. For reference, we also include classification results using the constant classifier, C4.5

classifier, and continuous version of the naı̈ve Bayes classifier.

We had the following goals while conducting this experiment:

1. The main goal of this dissertation: how useful is Bayesian learning for classification

of inherently noisy cardiac SPECT images.

2. How do new Bayesian learning algorithms compare to other algorithms.
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3. Which new Bayesian network search algorithms perform best on average.

4. Which Bayesian network quality measure performs best on average.

5. Evaluate the quality of the datasets used for this experiment.

This is the largest study presented in this work and from the statistical point of view it is

best suited for drawing conclusions about performance of the new Bayesian learning meth-

ods. We use 44 datasets having 16 attributes each (one dataset for each of the 22 3D regions

of interest, for females and males separately). Then-fold cross validation is performed, and

29 classification algorithms are tested. Total of 12,760 individual classification tests have

been performed. The results are summarized in the tables presented on the following pages.

We show cross-validation result for each of the algorithms and each of the datasets.

8.2.1 Feature Extraction and Creation of Datasets

The features were extracted from 3D SPECT images using a technique described in Sec-

tion 4.4.3. We have used more than a single 2D slice for each of the five views (see Fig-

ure 4.1). This is to compensate for ambiguity of using exactly the same slice that may

have been used by an evaluating physician while recording perfusion codes. For each of

the short axis views we used three slices; search radius was set to 9 for females and 10 for

males. For the horizontal long axis view we used three slices; search radius was set to 11

for females and 12 for males. For the vertical long axis view we used two slices; search ra-

dius was set to 10 for females and 12 for males. Number of slices per view for females and

males was coincidentally the same, although it was not intentional. The number of slices

and radius of search has been determined by inspecting each of the normal left ventricle

models independently.

For each view in 3Drest andstress images, 2D MAX and TOT images were created

using cylindrical radial search, as described in Section 4.4.1. Each of the 2D images has

been normalized by dividing each pixel value by the largest pixel intensity found in the
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Table 8.4:Case counts for partial LV perfusion classification tests: Females.

NL F P R X A

SHORT_AXIS_AP_ANT 67 10 10 8 1 28 124

SHORT_AXIS_AP_LAT 110 4 6 2 0 2 124

SHORT_AXIS_AP_INF 106 12 2 2 0 2 124

SHORT_AXIS_AP_SEPT 114 2 1 5 0 2 124

SHORT_AXIS_MID_ANT 57 13 6 15 2 31 124

SHORT_AXIS_MID_ANT_LAT 99 7 3 8 0 7 124

SHORT_AXIS_MID_INF_LAT 106 9 2 6 0 1 124

SHORT_AXIS_MID_INF 109 9 2 3 0 1 124

SHORT_AXIS_MID_ANT_SEPT 106 4 2 10 0 2 124

SHORT_AXIS_BASAL_ANT 60 14 9 11 1 29 124

SHORT_AXIS_BASAL_ANT_LAT 107 6 2 4 0 4 123

SHORT_AXIS_BASAL_INF_LAT 104 10 3 7 0 0 124

SHORT_AXIS_BASAL_INF 103 11 3 3 1 2 123

SHORT_AXIS_BASAL_ANT_SEPT 102 3 4 9 1 5 124

HORIZ_LONG_SEPT 114 0 0 7 1 2 124

HORIZ_LONG_APICAL 100 8 5 7 1 2 123

HORIZ_LONG_LAT 103 6 4 7 1 3 124

HORIZ_LONG_BASAL 113 5 2 4 0 0 124

VERT_LONG_ANT 61 12 6 14 1 28 122

VERT_LONG_APICAL 103 8 5 5 1 2 124

VERT_LONG_INF 105 11 2 5 0 1 124

VERT_LONG_BASAL 109 10 1 3 1 0 124

Total 2158 174 80 145 12 154

79% 6% 3% 5% 0% 6%

Total
Defect Codes

ROI Name

corresponding 3D image. For each of the ROI, we extracted four features from 2D images:

maximum intensity in the region, mean intensity, median intensity, and standard deviation

of the intensity in the region. This gives a total of 16 features for each ROI. A separate

dataset has been created for each ROI; separate for males and females.

Tables 8.4 and 8.5 present case counts for females and males for each of the diagnosis

types (NL – normal,F – fixes defect,P – partially reversible defect,R – reversible defect,

X – defect showing reverse redistribution,A – artifact). We used cases that had complete

cardiologist’s evaluation record for each of the 22 ROI. For males we used cases that had the

normal left ventricle model correlation match 0.95 or better (see Section 4.3); this resulted

in 170 patient cases. For females we used cases that had the normal left ventricle model

correlation match 0.93 or better; this resulted in 124 cases.
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Table 8.5:Case counts for partial LV perfusion classification tests: Males.

NL F P R X A

SHORT_AXIS_AP_ANT 137 10 8 11 1 3 170

SHORT_AXIS_AP_LAT 147 8 7 7 1 0 170

SHORT_AXIS_AP_INF 64 53 22 16 4 9 168

SHORT_AXIS_AP_SEPT 154 6 4 5 0 1 170

SHORT_AXIS_MID_ANT 141 5 9 13 0 2 170

SHORT_AXIS_MID_ANT_LAT 157 2 5 5 1 0 170

SHORT_AXIS_MID_INF_LAT 104 23 20 12 2 8 169

SHORT_AXIS_MID_INF 67 53 26 10 2 11 169

SHORT_AXIS_MID_ANT_SEPT 145 6 8 9 1 0 169

SHORT_AXIS_BASAL_ANT 148 5 6 8 1 2 170

SHORT_AXIS_BASAL_ANT_LAT 164 1 1 2 1 1 170

SHORT_AXIS_BASAL_INF_LAT 101 28 21 9 0 10 169

SHORT_AXIS_BASAL_INF 62 50 27 13 2 15 169

SHORT_AXIS_BASAL_ANT_SEPT 146 3 9 11 0 1 170

HORIZ_LONG_SEPT 139 5 9 15 1 0 169

HORIZ_LONG_APICAL 111 31 7 19 1 1 170

HORIZ_LONG_LAT 143 11 10 4 2 0 170

HORIZ_LONG_BASAL 151 11 10 4 2 0 178

VERT_LONG_ANT 137 6 11 13 1 2 170

VERT_LONG_APICAL 95 32 11 26 2 3 169

VERT_LONG_INF 54 53 29 19 3 10 168

VERT_LONG_BASAL 141 17 4 3 0 5 170

Total 2708 419 264 234 28 84

72% 11% 7% 6% 1% 2%

Total
Defect Codes

ROI Name

The last column in Tables 8.4 and 8.5 shows the total number of cases in each dataset.

This not always sums to 124 and 170, respectively, since there were some coding errors in

the databases that we were not able to resolve: there was more than a single code recorded

for particular ROI. We did not drop these cases completely since they had correct diagnosis

for other ROI and could be used for creation of other datasets.

The last two rows in Tables 8.4 and 8.5 show total number of times each defect was

present in 22 ROIs. Due to low number of cases and low relative count for defect types,

other than normal, we combined all the defect codes into oneabnormal . Thus, each of the

datasets used for experiments had two classes,normal andabnormal , and 16 attributes.
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8.2.2 Experiments

Experimental results are presented in Tables 8.6 to 8.11. We abbreviated names to narrow

the ROI Name column and fit more columns per page. Tables 8.6 presents results for

the reference classifiers and overall best result for the new Bayesian network classifiers.

Tables 8.7 to 8.11 present results for FAN, STAN, STAND, SFAN, and SFAND classifier,

respectively. The first number is the ten-fold cross validation error. The number after±

is the standard deviation of the mean. Numbers in bold indicate the lowest error rate in a

given table for a given dataset. Numbers with gray background indicate the smallest error

for a given dataset among all of the tested classifiers.

Bottom of each table shows two performance indicators for each of the classifiers: an

average error rate (lower is better) and an average advantage ratio (higher is better). The

advantage ratio compares performance of a classifier to the constant classifier; it will be

described in detail in the next section on page 122.
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Table 8.6:Ten-fold cross-validation error of the partial LV perfusion classification for

reference classifiers and summary for new Bayesian network classifiers.

SHORT_AP_ANT 46.09 ± 3.86 37.69 ± 3.06 33.65 ± 4.05 31.99 ± 4.03 27.18 ± 3.32

SHORT_AP_LAT 11.45 ± 2.84 9.68 ± 2.57 14.36 ± 3.40 11.99 ± 3.56 8.08 ± 2.39

SHORT_AP_INF 14.42 ± 3.05 20.71 ± 3.43 14.29 ± 3.18 15.06 ± 3.91 13.53 ± 3.31

SHORT_AP_SEPT 8.01 ± 2.35 7.18 ± 2.20 9.68 ± 2.30 8.01 ± 2.35 8.01 ± 2.35

SHORT_MID_ANT 46.03 ± 4.03 36.35 ± 3.96 31.35 ± 2.88 32.24 ± 3.55 27.44 ± 2.77

SHORT_MID_ANT_LAT 20.13 ± 3.42 17.69 ± 5.07 20.19 ± 3.83 16.79 ± 4.48 15.19 ± 4.89

SHORT_MID_INF_LAT 14.55 ± 1.11 13.78 ± 2.42 15.96 ± 2.55 15.32 ± 2.73 12.12 ± 1.78

SHORT_MID_INF 11.79 ± 3.85 11.09 ± 3.48 8.72 ± 2.95 7.88 ± 2.30 6.28 ± 1.93

SHORT_MID_ANT_SEPT 14.42 ± 3.05 12.76 ± 3.11 14.62 ± 2.45 16.09 ± 2.96 11.35 ± 1.85

SHORT_BASAL_ANT 59.10 ± 4.04 25.83 ± 3.58 31.92 ± 5.97 28.59 ± 6.00 22.44 ± 3.61

SHORT_BASAL_ANT_LAT 13.01 ± 2.53 21.09 ± 3.69 17.05 ± 3.42 16.92 ± 4.45 10.51 ± 2.11

SHORT_BASAL_INF_LAT 16.22 ± 1.80 21.03 ± 3.40 21.15 ± 3.32 18.65 ± 2.52 16.22 ± 1.80

SHORT_BASAL_INF 16.28 ± 2.11 21.92 ± 3.82 22.05 ± 3.74 17.95 ± 3.23 17.12 ± 2.88

SHORT_BASAL_ANT_SEPT 17.76 ± 2.36 26.79 ± 5.54 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36

HORIZ_LONG_SEPT 7.95 ± 2.70 5.58 ± 2.08 7.12 ± 2.47 5.58 ± 1.74 5.58 ± 1.74

HORIZ_LONG_APICAL 18.46 ± 3.86 21.92 ± 3.23 25.13 ± 2.70 18.59 ± 3.76 15.45 ± 2.57

HORIZ_LONG_LAT 16.86 ± 3.24 16.73 ± 3.98 16.03 ± 2.00 16.03 ± 3.42 12.76 ± 2.40

HORIZ_LONG_BASAL 8.85 ± 2.59 9.68 ± 2.40 12.12 ± 2.75 10.45 ± 1.71 7.95 ± 2.39

VERT_LONG_ANT 58.14 ± 2.02 39.36 ± 4.44 31.86 ± 4.07 30.19 ± 4.15 30.19 ± 4.15

VERT_LONG_APICAL 16.86 ± 2.81 20.90 ± 3.19 21.73 ± 3.60 17.63 ± 2.87 16.86 ± 2.81

VERT_LONG_INF 15.13 ± 3.08 21.54 ± 3.82 29.81 ± 4.19 15.90 ± 3.18 15.13 ± 3.08

VERT_LONG_BASAL 12.05 ± 2.99 19.29 ± 4.58 25.71 ± 3.49 12.05 ± 2.99 11.99 ± 2.43

SHORT_AP_ANT 19.41 ± 1.53 26.47 ± 2.36 19.41 ± 2.33 17.65 ± 2.32 16.47 ± 2.29

SHORT_AP_LAT 13.53 ± 2.33 12.94 ± 2.45 12.94 ± 2.11 11.18 ± 2.23 10.00 ± 1.97

SHORT_AP_INF 38.09 ± 3.30 39.96 ± 3.51 32.28 ± 2.44 32.90 ± 3.08 28.68 ± 3.32

SHORT_AP_SEPT 9.41 ± 2.35 12.94 ± 1.92 13.53 ± 2.64 10.59 ± 1.47 9.41 ± 2.18

SHORT_MID_ANT 17.06 ± 2.05 21.18 ± 2.35 20.59 ± 2.67 20.59 ± 2.67 17.06 ± 2.05

SHORT_MID_ANT_LAT 7.56 ± 1.76 7.65 ± 1.26 8.24 ± 1.57 7.65 ± 1.76 7.65 ± 1.76

SHORT_MID_INF_LAT 38.38 ± 4.26 38.38 ± 2.58 33.09 ± 3.26 33.05 ± 3.25 29.52 ± 2.99

SHORT_MID_INF 39.74 ± 4.51 41.32 ± 4.32 27.17 ± 4.46 25.99 ± 4.38 25.92 ± 5.04

SHORT_MID_ANT_SEPT 14.23 ± 2.53 17.76 ± 3.04 21.88 ± 3.03 14.82 ± 2.54 14.23 ± 2.53

SHORT_BASAL_ANT 12.94 ± 2.75 14.12 ± 2.66 17.06 ± 2.97 12.94 ± 2.75 12.35 ± 2.55

SHORT_BASAL_ANT_LAT 3.53 ± 0.96 4.12 ± 1.26 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96

SHORT_BASAL_INF_LAT 40.18 ± 4.75 33.68 ± 4.17 33.09 ± 2.89 31.91 ± 3.02 30.74 ± 3.56

SHORT_BASAL_INF 36.65 ± 4.16 37.83 ± 4.00 31.36 ± 3.16 28.90 ± 4.39 27.72 ± 3.00

SHORT_BASAL_ANT_SEPT 14.12 ± 2.51 17.65 ± 2.63 18.82 ± 3.70 14.12 ± 2.51 14.12 ± 2.51

HORIZ_LONG_SEPT 17.79 ± 2.81 13.57 ± 3.03 17.13 ± 2.82 12.46 ± 2.26 12.39 ± 2.83

HORIZ_LONG_APICAL 34.71 ± 3.87 28.24 ± 3.49 25.88 ± 3.19 23.53 ± 3.82 21.18 ± 2.66

HORIZ_LONG_LAT 15.88 ± 3.17 18.82 ± 2.88 14.12 ± 3.53 14.12 ± 3.19 11.76 ± 2.63

HORIZ_LONG_BASAL 11.18 ± 2.05 13.53 ± 2.49 9.41 ± 2.51 8.82 ± 2.19 8.24 ± 2.18

VERT_LONG_ANT 19.41 ± 2.33 22.35 ± 2.29 20.00 ± 2.51 20.00 ± 2.51 19.41 ± 2.33

VERT_LONG_APICAL 43.75 ± 3.59 44.93 ± 1.89 39.60 ± 3.78 41.40 ± 2.27 36.07 ± 3.52

VERT_LONG_INF 32.10 ± 3.26 35.74 ± 3.19 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26

VERT_LONG_BASAL 17.06 ± 3.09 16.47 ± 3.49 15.88 ± 3.17 15.88 ± 3.17 14.71 ± 3.07

Average error

Average advantage

17.55

0.00 -7.85 -6.82 7.51 11.98

21.82 21.78 20.67 18.54
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ROI Name Constant C4.5
Naïve 

Bayes
TAN

Best New 

BNC
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Table 8.7:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-

sification using FAN classifier.

SHORT_AP_ANT 31.99 ± 4.03 31.99 ± 4.03 32.82 ± 4.15 31.99 ± 4.03 31.99 ± 4.03

SHORT_AP_LAT 12.76 ± 3.90 11.99 ± 3.56 12.82 ± 3.34 11.99 ± 3.56 11.99 ± 3.56

SHORT_AP_INF 14.36 ± 3.03 15.96 ± 3.06 15.96 ± 3.06 14.29 ± 3.45 14.29 ± 3.45

SHORT_AP_SEPT 8.01 ± 2.35 9.68 ± 2.30 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35

SHORT_MID_ANT 32.24 ± 3.55 31.41 ± 2.67 32.24 ± 3.55 32.24 ± 3.55 32.24 ± 3.55

SHORT_MID_ANT_LAT 16.86 ± 3.63 16.79 ± 4.48 16.03 ± 3.73 16.86 ± 3.63 16.86 ± 3.63

SHORT_MID_INF_LAT 15.32 ± 2.73 14.49 ± 2.77 14.49 ± 2.81 15.26 ± 3.36 14.49 ± 2.81

SHORT_MID_INF 7.95 ± 2.34 8.72 ± 2.71 8.65 ± 3.16 8.59 ± 3.70 8.59 ± 3.70

SHORT_MID_ANT_SEPT 15.32 ± 3.07 13.72 ± 2.43 14.42 ± 3.05 15.32 ± 3.07 12.88 ± 2.13

SHORT_BASAL_ANT 28.59 ± 6.00 28.59 ± 6.00 28.65 ± 4.87 29.42 ± 5.74 28.65 ± 4.87

SHORT_BASAL_ANT_LAT 16.92 ± 4.45 14.55 ± 4.07 16.09 ± 4.54 16.09 ± 4.54 16.09 ± 4.54

SHORT_BASAL_INF_LAT 18.65 ± 2.52 18.65 ± 2.52 21.15 ± 2.90 18.65 ± 2.52 18.65 ± 2.52

SHORT_BASAL_INF 17.95 ± 3.23 17.95 ± 3.23 17.95 ± 3.23 17.95 ± 3.23 17.95 ± 3.23

SHORT_BASAL_ANT_SEPT 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36

HORIZ_LONG_SEPT 6.35 ± 2.00 7.12 ± 2.47 7.12 ± 2.47 6.35 ± 2.00 6.35 ± 2.00

HORIZ_LONG_APICAL 17.82 ± 3.56 19.55 ± 2.51 19.55 ± 2.80 17.88 ± 3.42 18.72 ± 3.26

HORIZ_LONG_LAT 16.79 ± 2.98 15.90 ± 3.25 15.96 ± 3.50 16.86 ± 3.31 16.86 ± 3.31

HORIZ_LONG_BASAL 10.45 ± 1.71 10.51 ± 2.45 11.28 ± 1.80 9.68 ± 2.05 9.68 ± 1.64

VERT_LONG_ANT 30.19 ± 4.15 31.03 ± 4.30 30.19 ± 4.15 30.19 ± 4.15 30.19 ± 4.15

VERT_LONG_APICAL 17.63 ± 2.87 19.17 ± 3.53 21.67 ± 3.56 19.17 ± 3.53 19.17 ± 3.53

VERT_LONG_INF 15.90 ± 3.18 15.90 ± 3.18 16.67 ± 3.45 15.13 ± 3.08 15.13 ± 3.08

VERT_LONG_BASAL 12.05 ± 2.99 13.72 ± 3.21 14.55 ± 2.91 13.72 ± 3.21 13.72 ± 3.21

SHORT_AP_ANT 17.06 ± 2.05 17.65 ± 2.32 17.65 ± 2.32 18.24 ± 2.39 18.24 ± 2.39

SHORT_AP_LAT 11.18 ± 2.23 11.76 ± 1.52 11.18 ± 2.23 11.18 ± 2.23 11.18 ± 2.23

SHORT_AP_INF 33.49 ± 2.80 30.48 ± 2.59 33.49 ± 2.51 33.49 ± 3.30 33.49 ± 3.30

SHORT_AP_SEPT 10.59 ± 1.47 10.59 ± 1.47 10.59 ± 1.92 10.59 ± 1.47 10.59 ± 1.47

SHORT_MID_ANT 20.59 ± 2.67 20.00 ± 2.35 18.82 ± 2.11 20.00 ± 2.51 20.00 ± 2.51

SHORT_MID_ANT_LAT 7.65 ± 1.76 8.24 ± 1.57 7.65 ± 1.76 7.65 ± 1.76 7.65 ± 1.76

SHORT_MID_INF_LAT 33.05 ± 3.25 32.46 ± 3.49 33.05 ± 3.25 33.05 ± 3.25 33.05 ± 3.25

SHORT_MID_INF 25.99 ± 4.38 25.92 ± 5.04 25.99 ± 4.38 25.99 ± 4.38 25.99 ± 4.38

SHORT_MID_ANT_SEPT 14.82 ± 2.54 14.82 ± 2.54 15.37 ± 2.65 14.82 ± 2.54 14.82 ± 2.54

SHORT_BASAL_ANT 14.12 ± 2.66 14.12 ± 2.66 14.12 ± 2.66 14.12 ± 2.66 14.12 ± 2.66

SHORT_BASAL_ANT_LAT 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96

SHORT_BASAL_INF_LAT 31.32 ± 3.25 31.91 ± 3.27 31.91 ± 2.89 31.91 ± 3.02 31.91 ± 3.02

SHORT_BASAL_INF 29.49 ± 4.17 27.83 ± 3.06 30.66 ± 3.33 27.72 ± 3.00 27.72 ± 3.00

SHORT_BASAL_ANT_SEPT 16.47 ± 3.26 17.65 ± 3.51 17.65 ± 3.51 16.47 ± 3.26 16.47 ± 3.26

HORIZ_LONG_SEPT 12.46 ± 2.26 13.01 ± 2.45 13.01 ± 2.28 13.01 ± 2.28 13.01 ± 2.28

HORIZ_LONG_APICAL 23.53 ± 3.82 23.53 ± 3.82 24.12 ± 4.15 24.12 ± 4.15 24.12 ± 4.15

HORIZ_LONG_LAT 12.94 ± 3.14 12.35 ± 3.09 13.53 ± 3.29 13.53 ± 3.04 13.53 ± 3.04

HORIZ_LONG_BASAL 8.82 ± 2.19 8.82 ± 2.19 8.82 ± 2.19 8.82 ± 2.19 8.82 ± 2.19

VERT_LONG_ANT 20.00 ± 2.51 20.00 ± 2.51 20.00 ± 2.51 20.00 ± 2.51 20.00 ± 2.51

VERT_LONG_APICAL 39.60 ± 3.23 39.60 ± 3.23 39.60 ± 3.23 39.60 ± 3.23 39.60 ± 3.67

VERT_LONG_INF 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26

VERT_LONG_BASAL 15.88 ± 3.17 15.88 ± 3.17 15.88 ± 3.17 15.88 ± 3.17 15.88 ± 3.17

Average error

Average advantage

18.55

7.05 6.14 4.69 6.81 7.24

18.56 18.58 18.93 18.62
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Table 8.8:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-

sification using STAN classifier.

SHORT_AP_ANT 31.22 ± 5.26 34.36 ± 5.32 28.01 ± 3.59 31.22 ± 3.52 29.55 ± 3.97

SHORT_AP_LAT 11.41 ± 3.09 10.45 ± 2.45 12.05 ± 2.13 10.58 ± 2.10 12.12 ± 2.75

SHORT_AP_INF 13.65 ± 3.32 14.42 ± 3.05 14.49 ± 2.61 15.26 ± 2.75 15.19 ± 2.96

SHORT_AP_SEPT 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35

SHORT_MID_ANT 30.58 ± 3.48 27.44 ± 2.77 31.41 ± 3.71 31.35 ± 4.03 31.35 ± 4.03

SHORT_MID_ANT_LAT 17.69 ± 3.89 20.90 ± 4.04 15.96 ± 4.82 15.96 ± 5.08 15.96 ± 5.08

SHORT_MID_INF_LAT 12.95 ± 1.35 13.72 ± 1.69 13.78 ± 2.42 12.88 ± 2.07 12.88 ± 2.07

SHORT_MID_INF 9.36 ± 3.76 8.59 ± 3.70 7.05 ± 2.43 7.82 ± 2.57 7.82 ± 2.57

SHORT_MID_ANT_SEPT 11.35 ± 1.85 11.35 ± 2.23 11.35 ± 2.23 13.01 ± 3.12 11.35 ± 2.23

SHORT_BASAL_ANT 27.88 ± 4.24 31.28 ± 4.55 22.56 ± 3.71 23.33 ± 3.44 23.33 ± 3.44

SHORT_BASAL_ANT_LAT 13.85 ± 1.77 11.41 ± 1.84 14.55 ± 3.46 13.85 ± 2.79 14.55 ± 2.83

SHORT_BASAL_INF_LAT 16.22 ± 1.80 16.22 ± 1.80 18.65 ± 2.52 18.65 ± 2.52 17.88 ± 2.49

SHORT_BASAL_INF 19.55 ± 2.18 18.78 ± 2.80 17.18 ± 3.39 17.12 ± 2.88 17.12 ± 2.88

SHORT_BASAL_ANT_SEPT 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36

HORIZ_LONG_SEPT 6.35 ± 2.00 6.35 ± 2.00 5.58 ± 1.74 5.58 ± 1.74 5.58 ± 1.74

HORIZ_LONG_APICAL 17.76 ± 3.08 19.23 ± 3.86 18.59 ± 3.33 17.76 ± 3.45 17.82 ± 3.10

HORIZ_LONG_LAT 15.19 ± 2.14 14.36 ± 2.56 15.19 ± 3.03 15.96 ± 3.34 16.79 ± 2.98

HORIZ_LONG_BASAL 9.62 ± 2.67 8.78 ± 1.85 8.78 ± 2.83 7.95 ± 2.39 7.95 ± 2.39

VERT_LONG_ANT 31.79 ± 3.97 31.79 ± 3.71 36.92 ± 3.58 36.03 ± 3.78 32.69 ± 3.56

VERT_LONG_APICAL 16.86 ± 2.81 17.63 ± 2.87 16.86 ± 2.81 17.63 ± 2.87 17.63 ± 2.87

VERT_LONG_INF 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08

VERT_LONG_BASAL 12.05 ± 2.99 12.05 ± 2.99 12.82 ± 2.09 11.99 ± 2.43 11.99 ± 2.43

SHORT_AP_ANT 17.06 ± 2.05 17.06 ± 2.05 17.65 ± 1.96 18.24 ± 2.23 18.24 ± 2.23

SHORT_AP_LAT 11.18 ± 2.83 10.59 ± 1.92 11.18 ± 1.63 11.76 ± 1.52 11.76 ± 1.52

SHORT_AP_INF 33.97 ± 1.39 33.42 ± 2.21 31.62 ± 2.29 35.29 ± 3.15 34.12 ± 3.47

SHORT_AP_SEPT 11.18 ± 2.55 10.00 ± 2.16 10.00 ± 2.33 9.41 ± 2.51 10.00 ± 2.49

SHORT_MID_ANT 17.65 ± 1.75 17.06 ± 2.05 20.59 ± 2.94 21.18 ± 2.66 21.18 ± 2.66

SHORT_MID_ANT_LAT 7.65 ± 1.76 7.65 ± 1.76 7.65 ± 1.76 7.65 ± 1.53 7.65 ± 1.53

SHORT_MID_INF_LAT 34.23 ± 4.14 31.84 ± 3.37 36.65 ± 2.84 35.44 ± 2.24 34.96 ± 2.78

SHORT_MID_INF 27.87 ± 3.68 28.42 ± 3.27 27.24 ± 4.59 27.79 ± 3.61 27.17 ± 3.71

SHORT_MID_ANT_SEPT 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53

SHORT_BASAL_ANT 12.35 ± 2.55 12.94 ± 2.75 12.94 ± 2.75 14.12 ± 2.66 14.12 ± 2.66

SHORT_BASAL_ANT_LAT 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96

SHORT_BASAL_INF_LAT 32.50 ± 3.39 33.68 ± 2.99 31.91 ± 3.38 33.09 ± 3.70 33.68 ± 3.58

SHORT_BASAL_INF 28.90 ± 3.93 33.09 ± 3.26 30.66 ± 4.15 29.49 ± 3.89 30.66 ± 4.51

SHORT_BASAL_ANT_SEPT 14.12 ± 2.51 14.12 ± 2.51 14.12 ± 2.51 15.29 ± 2.93 15.29 ± 2.93

HORIZ_LONG_SEPT 13.60 ± 2.63 15.37 ± 2.65 12.39 ± 2.83 14.19 ± 3.30 14.15 ± 3.18

HORIZ_LONG_APICAL 24.71 ± 3.59 24.12 ± 3.33 23.53 ± 3.28 24.12 ± 3.22 25.29 ± 3.40

HORIZ_LONG_LAT 15.29 ± 3.19 12.35 ± 2.70 14.12 ± 2.18 12.35 ± 1.85 13.53 ± 2.78

HORIZ_LONG_BASAL 8.24 ± 2.18 9.41 ± 1.80 9.41 ± 1.80 8.82 ± 2.52 8.82 ± 2.52

VERT_LONG_ANT 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33

VERT_LONG_APICAL 36.07 ± 3.52 38.42 ± 4.00 39.56 ± 3.21 40.15 ± 3.05 40.74 ± 3.13

VERT_LONG_INF 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26

VERT_LONG_BASAL 15.29 ± 3.19 15.29 ± 3.19 14.71 ± 3.07 15.29 ± 3.19 15.88 ± 3.51

Average error

Average advantage

18.34

10.14 10.37 10.30 9.77 9.35

18.12 18.27 18.13 18.36
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Table 8.9:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-

sification using STAND classifier.

SHORT_AP_ANT 31.99 ± 4.03 27.18 ± 3.93 32.12 ± 3.11 28.01 ± 3.37 29.68 ± 3.38

SHORT_AP_LAT 11.99 ± 3.56 11.99 ± 3.56 9.62 ± 2.00 8.08 ± 2.39 8.08 ± 2.39

SHORT_AP_INF 13.53 ± 3.31 14.42 ± 3.05 15.96 ± 2.55 16.79 ± 3.36 16.79 ± 3.16

SHORT_AP_SEPT 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35

SHORT_MID_ANT 31.41 ± 3.40 29.68 ± 4.07 33.78 ± 2.99 31.47 ± 2.53 32.95 ± 3.12

SHORT_MID_ANT_LAT 16.03 ± 3.73 16.03 ± 3.73 15.96 ± 5.08 19.29 ± 5.31 17.63 ± 4.67

SHORT_MID_INF_LAT 15.32 ± 2.73 15.26 ± 3.36 13.78 ± 2.42 13.72 ± 2.39 12.95 ± 2.45

SHORT_MID_INF 9.42 ± 3.23 8.59 ± 3.13 7.12 ± 2.47 7.05 ± 2.92 7.05 ± 2.92

SHORT_MID_ANT_SEPT 15.32 ± 3.07 11.35 ± 2.23 11.35 ± 2.23 14.49 ± 3.35 12.05 ± 2.68

SHORT_BASAL_ANT 27.82 ± 5.80 22.50 ± 3.71 23.27 ± 3.56 24.04 ± 3.99 23.27 ± 3.56

SHORT_BASAL_ANT_LAT 16.92 ± 5.25 13.01 ± 2.53 14.68 ± 2.43 15.45 ± 2.57 16.22 ± 2.92

SHORT_BASAL_INF_LAT 17.82 ± 2.08 16.22 ± 1.80 18.65 ± 2.52 18.65 ± 2.52 18.65 ± 2.52

SHORT_BASAL_INF 17.95 ± 3.23 17.82 ± 3.02 17.12 ± 2.88 17.12 ± 2.88 17.12 ± 2.88

SHORT_BASAL_ANT_SEPT 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36

HORIZ_LONG_SEPT 5.58 ± 1.74 6.35 ± 2.00 5.58 ± 1.74 5.58 ± 1.74 5.58 ± 1.74

HORIZ_LONG_APICAL 18.72 ± 2.70 18.72 ± 2.70 15.45 ± 2.57 18.65 ± 2.92 19.42 ± 4.01

HORIZ_LONG_LAT 16.03 ± 3.42 14.29 ± 2.73 15.26 ± 2.54 15.19 ± 2.43 15.19 ± 2.43

HORIZ_LONG_BASAL 10.45 ± 2.12 8.85 ± 2.59 8.78 ± 2.83 9.62 ± 2.67 9.62 ± 2.67

VERT_LONG_ANT 31.03 ± 4.12 30.32 ± 3.89 31.03 ± 3.70 31.09 ± 4.00 30.26 ± 4.22

VERT_LONG_APICAL 17.63 ± 2.87 16.86 ± 2.81 16.86 ± 2.81 17.63 ± 2.87 17.63 ± 2.87

VERT_LONG_INF 15.90 ± 3.18 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08

VERT_LONG_BASAL 12.82 ± 2.73 12.05 ± 2.99 12.05 ± 2.99 12.05 ± 2.99 12.05 ± 2.99

SHORT_AP_ANT 17.65 ± 2.32 17.65 ± 2.32 18.24 ± 2.05 17.65 ± 2.32 17.65 ± 2.32

SHORT_AP_LAT 11.18 ± 2.23 11.18 ± 2.23 11.76 ± 1.75 12.94 ± 2.11 12.35 ± 2.23

SHORT_AP_INF 31.73 ± 3.20 28.68 ± 3.32 34.67 ± 2.72 37.68 ± 3.24 37.06 ± 2.90

SHORT_AP_SEPT 10.59 ± 1.47 9.41 ± 2.35 10.59 ± 2.45 11.18 ± 2.97 11.18 ± 2.97

SHORT_MID_ANT 20.00 ± 2.93 17.06 ± 2.05 20.59 ± 2.94 20.00 ± 2.66 20.59 ± 2.36

SHORT_MID_ANT_LAT 8.24 ± 1.57 7.65 ± 1.76 8.24 ± 1.57 7.65 ± 1.53 7.65 ± 1.53

SHORT_MID_INF_LAT 33.05 ± 3.25 29.52 ± 2.99 32.46 ± 3.49 34.26 ± 2.38 34.26 ± 2.96

SHORT_MID_INF 25.99 ± 4.11 25.99 ± 4.11 28.97 ± 3.85 28.35 ± 3.87 28.38 ± 4.26

SHORT_MID_ANT_SEPT 14.82 ± 2.54 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53

SHORT_BASAL_ANT 12.94 ± 2.75 12.94 ± 2.75 12.94 ± 2.75 12.94 ± 2.75 12.94 ± 2.75

SHORT_BASAL_ANT_LAT 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96

SHORT_BASAL_INF_LAT 31.91 ± 3.02 31.91 ± 2.89 30.74 ± 3.56 31.91 ± 3.71 32.50 ± 3.39

SHORT_BASAL_INF 28.31 ± 4.84 31.88 ± 3.48 30.66 ± 4.51 30.07 ± 3.29 30.66 ± 3.09

SHORT_BASAL_ANT_SEPT 14.12 ± 2.51 14.12 ± 2.51 14.12 ± 2.51 14.12 ± 2.51 14.12 ± 2.51

HORIZ_LONG_SEPT 12.98 ± 2.59 12.98 ± 2.27 12.98 ± 3.25 12.39 ± 2.96 12.98 ± 2.87

HORIZ_LONG_APICAL 23.53 ± 3.82 22.94 ± 3.45 22.94 ± 4.25 22.94 ± 3.33 22.35 ± 3.80

HORIZ_LONG_LAT 14.12 ± 2.35 14.12 ± 3.19 13.53 ± 2.78 14.12 ± 3.06 13.53 ± 3.29

HORIZ_LONG_BASAL 8.82 ± 2.19 8.82 ± 2.19 8.82 ± 2.01 8.82 ± 2.01 8.82 ± 2.01

VERT_LONG_ANT 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33

VERT_LONG_APICAL 40.18 ± 3.75 38.42 ± 4.10 39.56 ± 3.33 40.74 ± 3.37 40.74 ± 3.37

VERT_LONG_INF 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26

VERT_LONG_BASAL 15.88 ± 3.17 15.29 ± 3.19 15.29 ± 3.19 15.29 ± 3.19 15.88 ± 3.51

Average error

Average advantage

18.32

7.73 11.98 10.57 8.97 9.30

18.42 17.55 18.08 18.35
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Table 8.10:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-

sification using SFAN classifier.

SHORT_AP_ANT 32.88 ± 4.68 29.49 ± 4.85 28.78 ± 3.70 28.85 ± 3.15 28.85 ± 3.15

SHORT_AP_LAT 11.41 ± 3.09 8.91 ± 2.54 11.28 ± 3.40 10.51 ± 3.19 10.51 ± 2.93

SHORT_AP_INF 17.56 ± 3.21 15.13 ± 3.11 16.79 ± 2.67 14.36 ± 3.03 15.13 ± 3.54

SHORT_AP_SEPT 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35

SHORT_MID_ANT 30.58 ± 3.48 29.04 ± 2.80 32.24 ± 2.66 33.08 ± 3.67 33.27 ± 3.69

SHORT_MID_ANT_LAT 17.69 ± 3.89 20.90 ± 4.04 16.73 ± 5.00 15.96 ± 5.08 15.19 ± 4.89

SHORT_MID_INF_LAT 12.12 ± 1.78 15.26 ± 2.94 16.15 ± 1.26 14.49 ± 2.56 14.49 ± 2.56

SHORT_MID_INF 8.59 ± 3.70 7.82 ± 3.04 8.72 ± 2.95 8.59 ± 3.70 9.42 ± 3.79

SHORT_MID_ANT_SEPT 11.35 ± 1.85 12.18 ± 2.26 11.35 ± 2.23 13.85 ± 2.83 11.35 ± 2.23

SHORT_BASAL_ANT 27.88 ± 4.24 31.22 ± 5.11 24.04 ± 4.36 23.27 ± 3.97 22.44 ± 3.61

SHORT_BASAL_ANT_LAT 14.68 ± 1.68 10.51 ± 2.11 13.72 ± 4.11 13.78 ± 2.91 15.45 ± 3.04

SHORT_BASAL_INF_LAT 17.88 ± 2.49 16.22 ± 1.80 18.65 ± 2.52 18.65 ± 2.52 17.88 ± 2.49

SHORT_BASAL_INF 19.62 ± 2.56 18.78 ± 3.30 17.88 ± 2.70 17.12 ± 2.88 17.12 ± 2.88

SHORT_BASAL_ANT_SEPT 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36

HORIZ_LONG_SEPT 6.35 ± 2.00 6.35 ± 2.00 7.12 ± 2.47 5.58 ± 1.74 5.58 ± 1.74

HORIZ_LONG_APICAL 17.95 ± 2.41 17.88 ± 3.18 17.05 ± 3.08 16.15 ± 3.12 17.82 ± 3.10

HORIZ_LONG_LAT 15.19 ± 2.14 12.82 ± 2.43 12.76 ± 2.40 15.96 ± 2.55 17.63 ± 3.26

HORIZ_LONG_BASAL 9.62 ± 2.67 8.78 ± 1.85 8.78 ± 2.22 9.55 ± 1.95 9.55 ± 1.95

VERT_LONG_ANT 31.79 ± 3.97 31.86 ± 3.22 31.86 ± 3.64 33.65 ± 3.82 33.46 ± 4.32

VERT_LONG_APICAL 17.63 ± 2.87 19.36 ± 3.07 17.63 ± 2.87 21.67 ± 3.56 21.67 ± 3.56

VERT_LONG_INF 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08

VERT_LONG_BASAL 13.72 ± 3.21 12.05 ± 2.99 14.29 ± 3.41 13.72 ± 3.21 13.72 ± 3.21

SHORT_AP_ANT 16.47 ± 2.29 17.65 ± 2.15 18.24 ± 2.05 17.65 ± 2.32 17.65 ± 2.32

SHORT_AP_LAT 11.18 ± 2.83 10.00 ± 1.97 11.76 ± 1.52 12.35 ± 2.23 11.18 ± 1.85

SHORT_AP_INF 33.97 ± 1.39 31.65 ± 2.70 33.49 ± 3.18 34.71 ± 3.06 34.08 ± 2.77

SHORT_AP_SEPT 11.76 ± 2.32 11.18 ± 1.63 9.41 ± 2.18 10.59 ± 2.29 10.59 ± 2.29

SHORT_MID_ANT 17.65 ± 1.75 17.65 ± 1.75 20.59 ± 2.67 21.18 ± 2.18 21.76 ± 2.33

SHORT_MID_ANT_LAT 7.65 ± 1.76 7.65 ± 1.76 7.65 ± 1.76 7.65 ± 1.53 7.65 ± 1.53

SHORT_MID_INF_LAT 34.23 ± 4.14 31.84 ± 3.37 33.64 ± 3.35 34.82 ± 3.03 33.64 ± 2.71

SHORT_MID_INF 27.87 ± 3.68 27.83 ± 3.94 29.01 ± 4.43 27.72 ± 3.99 27.72 ± 3.99

SHORT_MID_ANT_SEPT 14.23 ± 2.53 14.82 ± 2.54 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53

SHORT_BASAL_ANT 12.35 ± 2.55 12.94 ± 2.75 12.94 ± 2.75 14.12 ± 2.66 14.12 ± 2.66

SHORT_BASAL_ANT_LAT 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96

SHORT_BASAL_INF_LAT 31.91 ± 3.60 32.50 ± 3.27 32.50 ± 2.90 33.68 ± 3.47 33.75 ± 4.04

SHORT_BASAL_INF 29.49 ± 3.89 30.66 ± 4.06 31.88 ± 3.13 30.66 ± 3.21 30.66 ± 3.44

SHORT_BASAL_ANT_SEPT 14.12 ± 2.51 14.12 ± 2.51 15.29 ± 2.93 16.47 ± 3.26 16.47 ± 3.26

HORIZ_LONG_SEPT 13.60 ± 2.63 15.33 ± 2.92 12.39 ± 3.21 14.78 ± 3.19 14.74 ± 3.18

HORIZ_LONG_APICAL 24.12 ± 3.22 24.12 ± 2.83 23.53 ± 3.40 24.12 ± 3.66 24.12 ± 3.22

HORIZ_LONG_LAT 14.12 ± 3.06 13.53 ± 2.49 13.53 ± 3.17 14.12 ± 2.80 14.12 ± 3.06

HORIZ_LONG_BASAL 8.24 ± 2.18 9.41 ± 1.80 9.41 ± 1.80 8.82 ± 2.52 8.82 ± 2.52

VERT_LONG_ANT 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33

VERT_LONG_APICAL 36.07 ± 3.52 38.42 ± 4.00 38.97 ± 3.88 38.38 ± 3.68 36.07 ± 3.52

VERT_LONG_INF 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26

VERT_LONG_BASAL 15.29 ± 3.19 15.29 ± 3.19 15.29 ± 3.19 15.29 ± 3.19 15.88 ± 3.51

Average error

Average advantage

18.49

9.02 10.56 8.80 7.68 7.57

18.29 18.12 18.31 18.55
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Table 8.11:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-

sification using SFAND classifier.

SHORT_AP_ANT 31.99 ± 4.03 29.49 ± 4.98 28.85 ± 3.15 27.18 ± 3.32 29.62 ± 3.49

SHORT_AP_LAT 12.76 ± 3.90 11.99 ± 3.56 12.12 ± 2.75 8.08 ± 2.39 8.08 ± 2.39

SHORT_AP_INF 14.36 ± 3.03 14.42 ± 3.05 16.03 ± 2.86 17.50 ± 3.76 16.73 ± 3.53

SHORT_AP_SEPT 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35 8.01 ± 2.35

SHORT_MID_ANT 31.41 ± 3.40 30.77 ± 3.28 34.62 ± 3.06 31.47 ± 2.53 33.08 ± 2.83

SHORT_MID_ANT_LAT 16.03 ± 3.73 16.03 ± 3.73 15.96 ± 5.08 18.53 ± 4.87 17.63 ± 4.67

SHORT_MID_INF_LAT 14.49 ± 2.77 14.42 ± 3.19 16.03 ± 3.04 14.49 ± 3.03 14.49 ± 3.03

SHORT_MID_INF 8.59 ± 3.70 8.72 ± 2.71 7.88 ± 3.28 6.28 ± 1.93 8.59 ± 3.70

SHORT_MID_ANT_SEPT 15.32 ± 3.07 12.18 ± 2.26 12.88 ± 2.95 14.55 ± 3.59 12.88 ± 2.95

SHORT_BASAL_ANT 27.82 ± 5.80 24.17 ± 3.36 24.10 ± 3.55 24.81 ± 3.87 24.81 ± 3.87

SHORT_BASAL_ANT_LAT 16.09 ± 4.36 13.01 ± 2.53 14.68 ± 2.43 15.45 ± 3.35 15.38 ± 3.71

SHORT_BASAL_INF_LAT 18.65 ± 2.52 16.22 ± 1.80 18.65 ± 2.52 18.65 ± 2.52 18.65 ± 2.52

SHORT_BASAL_INF 17.95 ± 3.23 17.82 ± 3.02 17.88 ± 2.93 17.12 ± 2.88 17.12 ± 2.88

SHORT_BASAL_ANT_SEPT 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36 17.76 ± 2.36

HORIZ_LONG_SEPT 5.58 ± 1.74 6.35 ± 2.00 6.35 ± 2.00 5.58 ± 1.74 5.58 ± 1.74

HORIZ_LONG_APICAL 18.72 ± 2.70 18.78 ± 2.50 20.13 ± 3.51 17.88 ± 2.65 17.95 ± 2.41

HORIZ_LONG_LAT 16.79 ± 3.67 14.29 ± 2.73 14.42 ± 2.91 14.36 ± 2.80 14.36 ± 2.80

HORIZ_LONG_BASAL 10.45 ± 2.12 8.85 ± 2.59 8.01 ± 2.10 10.38 ± 1.65 10.45 ± 1.71

VERT_LONG_ANT 31.03 ± 4.12 31.86 ± 3.67 31.09 ± 4.00 33.53 ± 4.07 31.92 ± 3.95

VERT_LONG_APICAL 17.63 ± 2.87 16.86 ± 2.81 17.63 ± 2.87 20.90 ± 3.23 20.90 ± 3.23

VERT_LONG_INF 15.90 ± 3.18 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08 15.13 ± 3.08

VERT_LONG_BASAL 12.82 ± 2.73 12.05 ± 2.99 12.76 ± 3.32 14.49 ± 3.54 15.38 ± 2.83

SHORT_AP_ANT 17.06 ± 1.85 17.65 ± 2.32 18.24 ± 2.05 17.65 ± 2.32 17.65 ± 2.32

SHORT_AP_LAT 11.18 ± 2.23 11.76 ± 1.52 11.18 ± 2.23 11.76 ± 2.15 11.18 ± 2.23

SHORT_AP_INF 32.90 ± 3.20 31.07 ± 2.52 32.94 ± 3.73 34.74 ± 3.39 34.71 ± 2.95

SHORT_AP_SEPT 10.59 ± 1.47 9.41 ± 2.35 10.59 ± 2.45 11.76 ± 2.91 11.76 ± 2.32

SHORT_MID_ANT 20.00 ± 2.80 17.06 ± 2.05 20.59 ± 2.67 21.18 ± 2.18 21.76 ± 2.33

SHORT_MID_ANT_LAT 8.24 ± 1.57 7.65 ± 1.76 8.24 ± 1.57 7.65 ± 1.53 7.65 ± 1.53

SHORT_MID_INF_LAT 32.46 ± 3.49 29.52 ± 2.99 32.46 ± 3.49 34.85 ± 2.77 34.26 ± 2.96

SHORT_MID_INF 25.99 ± 4.11 25.99 ± 4.11 29.01 ± 4.92 27.79 ± 3.81 28.38 ± 4.44

SHORT_MID_ANT_SEPT 14.82 ± 2.54 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53 14.23 ± 2.53

SHORT_BASAL_ANT 14.12 ± 2.66 12.94 ± 2.75 12.94 ± 2.75 14.12 ± 2.66 14.12 ± 2.66

SHORT_BASAL_ANT_LAT 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96 3.53 ± 0.96

SHORT_BASAL_INF_LAT 31.32 ± 3.25 31.32 ± 3.25 33.09 ± 3.49 33.71 ± 3.38 33.68 ± 3.47

SHORT_BASAL_INF 28.90 ± 4.56 31.91 ± 3.91 29.49 ± 3.89 30.07 ± 4.03 30.66 ± 3.86

SHORT_BASAL_ANT_SEPT 14.12 ± 2.51 14.12 ± 2.51 15.29 ± 2.93 16.47 ± 3.26 16.47 ± 3.26

HORIZ_LONG_SEPT 12.98 ± 2.59 12.39 ± 3.21 12.39 ± 3.21 12.39 ± 2.96 12.98 ± 2.87

HORIZ_LONG_APICAL 23.53 ± 3.82 21.18 ± 2.66 22.94 ± 4.06 24.71 ± 3.37 24.71 ± 3.01

HORIZ_LONG_LAT 12.94 ± 3.14 11.76 ± 2.63 13.53 ± 3.04 13.53 ± 3.29 12.94 ± 3.14

HORIZ_LONG_BASAL 8.82 ± 2.19 8.82 ± 2.19 8.82 ± 2.01 8.82 ± 2.01 8.82 ± 2.01

VERT_LONG_ANT 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33 19.41 ± 2.33

VERT_LONG_APICAL 39.60 ± 3.11 38.42 ± 4.10 38.38 ± 3.68 38.97 ± 3.78 38.97 ± 3.78

VERT_LONG_INF 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26 32.10 ± 3.26

VERT_LONG_BASAL 15.88 ± 3.17 15.29 ± 3.19 15.29 ± 3.19 15.29 ± 3.19 15.88 ± 3.51

Average error

Average advantage

18.56 18.64

11.97 8.66 7.44 7.08

18.42

7.69

17.65 18.31

ROI Name
SFAND

HGC SB LC LOO CV1010

F
e
m
a
le

M
a
le



117

8.2.3 Discussion of Results

Usefulness of new Bayesian Classifiers for Interpretation of SPECT Data

As demonstrated in Table 8.6, 42 out of 44 times the new Bayesian classifiers were better

than or equal to any of the reference classifiers. This has not been intended to be an exhaus-

tive study of existing classification approaches, since only three other nontrivial classifiers

were tested (C4.5, naı̈ve Bayes, and TAN). However, it shows that the new Bayesian classi-

fiers perform well on the SPECT data. Especially, that they outperformed well known C4.5

classifier.

We have selected the STAND-SB classifier, as a representative of the new Bayesian

network classifiers, and compared it to the four reference classifiers: constant, C4.5, naı̈ve

Bayes, and TAN. The diagrams showing the comparison are presented in Fig. 8.2. Axis in

each diagram represent percentage error rate. The pink diagonal line represents equal of

error for the two compared classifiers. A blue mark represents a dataset. When a blue mark

is above the line it means that a classifier compared to STAND-SB had a larger error for

that dataset. When a mark is below the diagonal pink line it means that STAND-SB had

a larger error. Diagrams in Fig. 8.2 demonstrate that STAND-SB outperforms all of the

reference classifiers.

Performance of Network Search Algorithms

We ranked performance of the new Bayesian network search algorithms by counting how

many times each algorithm had the lowest error among all classifiers (the number of cells

with gray background in Tables 8.7 through 8.11). The ranking is presented in Table 8.12.

STAN algorithm received the highest rating, FAN the lowest by a significant margin. Other

three algorithms performed close to each other and not much worse than STAN.



118

0

10

20

30

40

50

60

0 10 20 30 40 50 60

STAND-SB

C
o
n
s
ta
n
t

(a) STAND-SB versus constant classifier.
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(b) STAND-SB versus C4.5 classifier.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

STAND-SB

n
a
ïv
e
 B
a
y
e
s

(c) STAND-SB versus naı̈ve Bayes classifier.
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(d) STAND-SB versus TAN classifier.

Figure 8.2:Comparison of STAND-SB inducer versus constant classifier, C4.5, naı̈ve

Bayes, and TAN inducers on partial LV perfusion classification data.
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Table 8.12:Partial classification: ranking of Bayesian network classifier search algo-
rithms.

FAN STAN STAND SFAN SFAND

HGC 5 14 7 14 6
SB 4 12 16 10 16
LC 5 13 12 11 7

LOO 7 11 10 8 12
CV10101 7 11 10 12 9

total 28 61 55 55 50

Table 8.13:Partial classification: ranking of Bayesian network quality measures.

HSC SB LC LOO CV1010

FAN 27 23 18 24 27
STAN 20 21 21 17 16

STAND 15 30 22 19 22
SFAN 21 21 18 14 15

SFAND 14 30 16 17 13

total 97 125 92 91 93

Performance of Network Quality Measures

We ranked performance of the network structure quality measures by counting how many

times each measure produced lowest error for a given algorithm and a given dataset. The

ranking is presented in Table 8.13. The SB measure ranked highest. The remaining mea-

sures ranked similar to each other, with the HGC slightly better than others.

It is a bit surprising the SB ranked highest since it is a global measure. However, this

is the only measure that includes penalty for the network size, thus limiting number of

parameters in the network.

Overall Performance of the New Bayesian Network Classifiers

We have used the following three indicators to compare the new family of Bayesian network

classifiers to the reference classifiers (the constant classifier, C4.5, naı̈ve Bayes, and TAN):

Dataset error rate indicates for how many datasets the error rate of the best new Bayesian
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Table 8.14:Comparison of the new family of Bayesian network classifiers to reference
classifier (the constant classifier, C4.5, naı̈ve Bayes, and TAN) using the
partial left ventricle perfusion datasets datasets. A number indicates how
many times a best of the new classifiers was better, equal, or worse than a
best of reference classifiers.

Indicator Better Equal Worse
Dataset error rate 28 64% 14 32% 2 4%
Average error rate 17 68% 0 0% 8 32%

Average advantage ratio 18 75% 0 0% 7 25%

network classifier was better (lower), equal to, or worse (higher) than that of the best

reference classifier for a given dataset.

Average error rate indicates how many of the new Bayesian network classifiers had av-

erage error rate that is better (lower), equal to, or worse (higher) than that of the best

(lowest) average error rate of the reference classifiers.

Average advantage ratio indicates how many of the new Bayesian network classifiers had

average advantage ratio, Eq.( 8.1), that is better (higher), equal to, or worse (lower)

than that of the best (highest) average advantage ratio of the reference classifiers.

The indicators are shown in Table 8.14. This table clearly demonstrates that the new

family of Bayesian network algorithms produces classifiers that are performing better, on

the partial left ventricle perfusion datasets, than the reference classifiers.

Quality of the Datasets with Features Extracted from SPECT Images

By a quality of a datasetwe understand here the amount of information in the dataset that

can be utilized by a classifier to perform classification with low error. In an extreme case

a dataset may contain only the class variable (no attribute variables). The only reasonable

way to make a decision in this case is to create a classifier that will always predict the

class that is the most frequent in the training dataset. This is the same as constructing the

constant classifier – it always predicts the majority class, regardless of values of attributes.
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Table 8.15:Partial classification: ranking of dataset quality.

1 F_SHORT_AXIS_BASAL_ANT 62% 23 F_SHORT_AXIS_MID_INF_LAT 17%

2 F_VERT_LONG_ANT 48% 24 F_HORIZ_LONG_APICAL 16%

3 F_SHORT_AXIS_MID_INF 47% 25 M_SHORT_AXIS_AP_ANT 15%

4 F_SHORT_AXIS_AP_ANT 41% 26 M_VERT_LONG_BASAL 14%

5 F_SHORT_AXIS_MID_ANT 40% 27 F_SHORT_AXIS_AP_SEPT 10%

6 M_HORIZ_LONG_APICAL 39% 27 F_HORIZ_LONG_BASAL 10%

7 M_SHORT_AXIS_MID_INF 35% 29 F_SHORT_AXIS_AP_INF 6%

8 M_HORIZ_LONG_SEPT 30% 30 M_SHORT_AXIS_BASAL_ANT 5%

9 F_HORIZ_LONG_SEPT 30% 31 F_VERT_LONG_BASAL 1%

10 F_SHORT_AXIS_AP_LAT 29% 32 F_SHORT_AXIS_BASAL_ANT_SEPT 0%

11 M_HORIZ_LONG_BASAL 26% 32 M_SHORT_AXIS_BASAL_ANT_LAT 0%

12 M_SHORT_AXIS_AP_LAT 26% 32 M_SHORT_AXIS_BASAL_ANT_SEPT 0%

12 M_HORIZ_LONG_LAT 26% 32 M_SHORT_AXIS_MID_ANT_SEPT 0%

14 M_SHORT_AXIS_AP_INF 25% 32 M_VERT_LONG_INF 0%

14 F_SHORT_AXIS_MID_ANT_LAT 25% 32 F_SHORT_AXIS_BASAL_INF_LAT 0%

16 M_SHORT_AXIS_BASAL_INF 24% 32 F_VERT_LONG_INF 0%

16 F_HORIZ_LONG_LAT 24% 32 M_SHORT_AXIS_MID_ANT 0%

16 M_SHORT_AXIS_BASAL_INF_LAT 24% 32 F_VERT_LONG_APICAL 0%

19 M_SHORT_AXIS_MID_INF_LAT 23% 32 M_VERT_LONG_ANT 0%

20 F_SHORT_AXIS_MID_ANT_SEPT 21% 32 M_SHORT_AXIS_AP_SEPT 0%

21 F_SHORT_AXIS_BASAL_ANT_LAT 19% 43 M_SHORT_AXIS_MID_ANT_LAT -1%

22 M_VERT_LONG_APICAL 18% 44 F_SHORT_AXIS_BASAL_INF -5%
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Figure 8.3:Quality of the partial left ventricle classification datasets: comparison of the

the constant classifier to a best nontrivial classifier tested.
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The constant classifier behaves as if there is no useful information in the attribute variables

– dataset contains only noise. Thus we use the constant classifier error rate as a reference

error rate for other classifiers.

If we can build a classifier that produces error rate significantly lower for a given dataset

than the constant classifier, we can judge that this dataset has good quality. For a perfect

dataset we should be able to build a classifier that has error rate close to zero, regardless of

the error rate of the constant classifier. We are proposing the followingadvantage ratioto

rank datasets:

advantage ratio =
εconst − εbest

εconst

· 100% (8.1)

whereεconst is the error rate of the constant classifier for a given dataset, andεbest is the

error rate of a best classifier we were able to build for that dataset. The advantage ratio

defined by Eq. (8.1) reaches value of100% if we can build a classifier with error rate equal

to zero; it equals0% if the error rate of our best classifier is the same as the constant

classifier; and it is negative if our best classifier produces error rate higher than the constant

classifier.

Table 8.15 shows ranking of datasets sorted in order of decreasing advantage ratio. We

calculated the advantage ratio using ten-fold cross-validation results presented in Table 8.6.

We can say that datasets with advantage ratio close or less than zero are of low quality. A

direct comparison of the classification error of the constant classifier versus a best classifier

for given dataset is presented in Fig. 8.3.

We can see from Table 8.15 that there is a significant variability in quality of the

datasets. DatasetF-SHORT-AXIS-BASAL-ANT has the highest advantage ratio indicating

that it contains most useful information contributing to the classification goal, but its best

error rate of22.44% is still quite high. On the other hand, the datasetM-SHORT-AXIS-

BASAL-ANT-LAT had the lowest error rate of3.53% among all datasets, but it had the

advantage ratio equal zero indicating that it does not contain information useful for clas-

sification. Table 8.5 shows that this dataset contains no more than two examples for each
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of the defect types. From statistical point of view, this is not sufficient for adequate repre-

sentation of these defects in the dataset, even if these defects were combined into a single

category.

There are three main factors determining the quality of a dataset. First, the number

of cases in the dataset – if it is sufficient to represent the information about the underlying

phenomenon (perfusion of the left ventricle in our case). Second, noise in coding the values

of a class variable, which we estimated in Section 8.1. Third, the information coding

scheme for attributes; in our case, the feature extraction process described in Chapter 4.

The advantage ratio is only able to judge these factors cumulatively. But we can combine

it with information presented in Tables 8.4, 8.5, and 8.6. Our overall conclusion is that the

results of partial classification look very promising, but a database containing significantly

larger number of cases is needed before better results can be achieved.

8.3 Overall Classification of the Left Ventricle Perfusion

In the experiment described in the previous section partial classification of the left ventric-

ular perfusion was performed, classifying each of the 22 3D ROIs separately. The goal of

the experiment described in this section is to determine feasibility of performing an over-

all classification of the perfusion of the left ventricle. We use the same feature extraction

process as described in Section 8.2; however, we create different datasets. We selected

cases that had a single overall perfusion code recorded in the database, see Table 3.1. Ad-

ditionally, we used only defect types that have at least five cases representing them. And,

as before, we used only these cases that have sufficiently high left ventricle model fit cor-

relation ratio (0.95 for males, and 0.93 for females). Count for the cases satisfying these

criteria is presented in Table 8.16.

The difficulty we faced is that we had a low number of cases and a large number of

attributes. As described in Section 8.2, 16 features were extracted for each of the 22 3D
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Table 8.16:Case counts for overall LV perfusion classification tests.

NL IS INF IS-IN

36 16 14 8

49% 22% 19% 11%

23 20 30 45

19% 17% 25% 38%

# attributes # casesSex
Classes

Male 44 118

7444Female

ROI resulting in 352 attributes available for the overall classification. This is larger than

number of available cases. If we were to use all of the features we could expect very high

variance in estimation of classifier parameters. We decided to use only one feature for

each ROI inrest andstress images resulting in 44 attributes. We decided to use features

based on maximum, mean, and median of pixel values in a 3D region. We used either

MAX or TOT radial search image. Thus we had six feature types:MAX-Max, MAX-Mean,

MAX-Median, TOT-Max, TOT-Mean, andTOT-Median. We created one dataset for each six

feature types, for females and males separately, resulting in 12 datasets. Each dataset had

four classes:NL – normal,IS – ischemia,INF – infarct, andIS-IN – ischemia-infarct.

Ten-fold cross validation has been performed using reference classifiers (the constant

classifier, C4.5, näıve Bayes, and TAN), and all of the 25 new Bayesian network classifiers.

The results are presented in Tables 8.17 through 8.22. As before, a number in bold indicates

the lowest error for a given dataset in a particular table. Numbers with gray background

indicate lowest error rate among all classifiers tested for a given dataset.

The summary of the results is presented in Table 8.17. The best feature type, for both

females and males, is the median of pixel intensity taken fromTOT images. Two surprising

observations can be concluded from Table 8.17:

1. The error rate and the advantage ratio is better for females than for males, despite the

female sample is smaller and we would expect that given large number of attributes

the variance of classifier parameters will be high. However, the male sample is also

small compared to number of attributes. Distribution of classes in the male sample,
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see Table 8.16, is more uniform. In the female sample classNL appears in almost

half of the cases making it an easier concept to learn.

2. The error rate for females is surprisingly low – we will explain shortly. At first the

absolute value of the error may look large, however, the absolute value is deceiving.

The error rate in the golden standard, estimated in Section 8.1, is about 17%. The

average error rate of partial classification of the left ventricle perfusion is about 18%

(see Table 8.6). If we build a hierarchical classifier that first performs partial classifi-

cation, then uses these results to perform overall classification3 then estimated error

rate of such a classifier will be the sum of the partial classification error rate and the

error level of the golden standard (the error rate of the best classifier that performs

overall classification using partial classification codes). This is about 35%. The error

rate for direct overall left ventricle perfusion classification usingTOT-Max approach

is 38.75% ± 6.06%. Within the margin of error, these two approaches, hierarchical

and direct usingTOT-Max, produce the same error rate.

To summarize above, we can say that we are positively surprised by the error rate

shown in Table 8.17. The available sample of patient cases was very small. And we expect

that direct classification approach could give good error rate given larger sample of patient

cases.

3Such a hierarchical classifier can be build by using in the lower level the 22 classifiers constructed in

Section 8.6 One classifier for each of the 22 ROIs. And using in the upper level the best classifier constructed

in Section 8.1, that issues the overall diagnosis of the left ventricle perfusion based on partial diagnosis in

each of the 22 ROIs.
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Table 8.17:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using reference classifiers and the best results for the new

Bayesian network classifiers. The last column shows value of the advantage

ratio of the best classifier for a given dataset (higher is better).

S
e
x Image 

Type

Feature 

Type

Adv. 

Ratio

Max 51.07 ± 4.39 59.46 ±2.78 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 0.00

Mean 51.07 ± 4.39 53.93 ±5.07 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 0.00

Median 51.07 ± 4.39 61.96 ±5.41 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 0.00

Max 51.07 ± 4.39 55.71 ±4.51 53.75 ± 4.43 53.75 ± 3.24 49.82 ± 3.63 0.02

Mean 51.07 ± 4.39 43.57 ±3.71 43.04 ± 4.51 48.57 ± 5.44 41.79 ± 4.46 0.18

Median 51.07 ± 4.39 48.21 ±4.24 41.61 ± 4.73 40.36 ± 4.65 38.75 ± 6.06 0.24

Max 61.82 ± 3.15 69.62 ±4.84 62.80 ± 5.09 62.80 ± 5.38 59.47 ± 5.57 0.04

Mean 61.82 ± 3.15 64.55 ±3.14 61.06 ± 3.26 60.23 ± 2.68 55.15 ± 5.14 0.11

Median 61.82 ± 3.15 66.21 ±4.39 58.56 ± 3.95 56.74 ± 3.17 54.17 ± 3.63 0.12

Max 61.82 ± 3.15 74.47 ±3.69 66.29 ± 4.61 63.64 ± 3.21 62.73 ± 3.05 0.00

Mean 61.82 ± 3.15 57.58 ±3.13 61.06 ± 3.43 55.30 ± 4.31 55.98 ± 4.20 0.11

Median 61.82 ± 3.15 71.89 ±2.96 62.80 ± 3.46 61.97 ± 3.23 57.73 ± 3.60 0.07

M
a
le

MAX

TOT

MAX

Constant 

Classifier
TAN

TOT

F
e
m
a
le

Best New 

BNC
C4.5 Naïve Bayes

Table 8.18:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using FAN classifier.

Max 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39

Mean 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01

Median 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29

Max 52.32 ± 4.00 53.75 ± 4.43 53.75 ± 4.43 53.75 ± 4.43 53.75 ± 4.43

Mean 43.04 ± 4.10 43.04 ± 4.51 41.79 ± 4.46 41.79 ± 4.46 43.04 ± 4.51

Median 41.61 ± 5.19 43.04 ± 4.98 41.61 ± 4.90 40.18 ± 4.90 40.18 ± 4.90

Max 62.88 ± 5.92 62.80 ± 5.09 62.80 ± 5.92 62.05 ± 5.92 62.05 ± 5.92

Mean 60.30 ± 3.60 60.38 ± 4.37 60.30 ± 2.68 60.23 ± 2.68 60.23 ± 2.68

Median 55.98 ± 4.20 58.41 ± 2.69 56.74 ± 3.63 54.17 ± 3.63 55.98 ± 4.20

Max 63.64 ± 3.21 62.73 ± 3.05 65.45 ± 3.83 64.47 ± 3.83 66.21 ± 4.76

Mean 56.14 ± 4.28 61.89 ± 3.68 59.32 ± 3.44 58.64 ± 3.44 58.48 ± 3.12

Median 61.97 ± 3.67 62.80 ± 3.46 61.14 ± 3.67 61.97 ± 3.67 61.97 ± 3.67

Feature 

Type

M
a
le

MAX

TOT

F
e
m
a
le

MAX

TOT

HGC
Sex

Image 

Type

FAN

SB LC CV1010LOO
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Table 8.19:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using STAN classifier.

Max 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39

Mean 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01

Median 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29

Max 53.75 ± 4.01 56.61 ± 4.56 49.82 ± 3.63 50.89 ± 4.19 50.89 ± 4.19

Mean 44.46 ± 5.50 45.71 ± 4.68 45.71 ± 4.79 46.07 ± 5.07 46.25 ± 5.97

Median 38.75 ± 6.06 47.14 ± 4.80 44.46 ± 4.97 40.54 ± 4.26 41.79 ± 3.92

Max 59.47 ± 5.57 60.30 ± 5.33 61.14 ± 5.64 60.30 ± 3.15 61.97 ± 5.52

Mean 60.83 ± 3.13 58.48 ± 3.12 58.64 ± 4.25 57.58 ± 2.82 60.15 ± 2.80

Median 67.73 ± 3.30 63.48 ± 2.89 57.65 ± 3.46 57.58 ± 3.33 57.58 ± 3.33

Max 68.79 ± 4.12 65.38 ± 4.50 67.05 ± 4.16 65.38 ± 2.81 65.38 ± 2.81

Mean 55.98 ± 4.20 57.05 ± 3.63 56.74 ± 3.83 60.45 ± 4.33 59.39 ± 3.17

Median 58.64 ± 4.25 58.64 ± 3.87 60.23 ± 3.86 60.23 ± 3.20 60.23 ± 4.05

F
e
m
a
le

MAX

TOT

M
a
le

MAX

TOT

Feature 

Type

STAN

HGC SB LC LOO CV1010
Sex

Image 

Type

Table 8.20:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using STAND classifier.

Max 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39

Mean 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01

Median 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29

Max 51.07 ± 3.36 53.75 ± 5.35 51.07 ± 3.36 50.89 ± 4.19 52.14 ± 4.73

Mean 50.00 ± 5.46 47.32 ± 4.88 43.21 ± 5.18 45.89 ± 6.12 47.32 ± 5.83

Median 38.93 ± 4.28 41.79 ± 5.38 44.29 ± 4.99 44.29 ± 4.99 44.29 ± 4.99

Max 61.14 ± 5.64 61.97 ± 5.52 61.14 ± 5.64 60.30 ± 4.88 59.47 ± 4.98

Mean 60.30 ± 4.38 60.98 ± 2.86 58.64 ± 3.21 59.39 ± 2.58 58.56 ± 5.14

Median 59.32 ± 3.67 60.15 ± 2.18 56.82 ± 4.50 56.89 ± 3.03 55.98 ± 3.24

Max 67.05 ± 4.16 64.47 ± 3.16 67.05 ± 4.16 67.05 ± 4.68 66.21 ± 3.67

Mean 57.80 ± 3.76 58.64 ± 4.06 58.41 ± 3.45 58.56 ± 3.31 58.48 ± 2.86

Median 57.73 ± 3.60 57.73 ± 4.00 60.23 ± 2.95 60.23 ± 3.86 59.39 ± 3.36

F
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MAX

TOT

M
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le

MAX

TOT

Sex
Image 

Type
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Table 8.21:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using SFAN classifier.

Max 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39

Mean 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01

Median 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29

Max 53.57 ± 4.12 53.93 ± 4.33 51.07 ± 3.36 53.75 ± 4.43 53.75 ± 4.43

Mean 43.04 ± 5.09 44.46 ± 5.50 43.21 ± 5.18 45.71 ± 5.47 45.54 ± 4.95

Median 44.46 ± 4.97 45.71 ± 5.14 42.86 ± 4.66 43.21 ± 4.22 41.79 ± 4.46

Max 59.47 ± 5.57 60.30 ± 5.33 61.82 ± 3.15 61.21 ± 3.42 62.80 ± 4.61

Mean 57.58 ± 2.87 56.67 ± 3.31 55.15 ± 1.56 59.47 ± 3.31 59.47 ± 3.31

Median 65.30 ± 3.84 63.48 ± 2.89 59.32 ± 3.31 56.74 ± 3.63 56.74 ± 3.63

Max 67.80 ± 3.46 65.23 ± 3.40 65.38 ± 3.31 64.55 ± 2.89 64.55 ± 2.89

Mean 57.80 ± 4.51 56.14 ± 4.79 58.71 ± 3.82 57.80 ± 3.33 57.80 ± 3.33

Median 58.64 ± 4.25 58.64 ± 3.87 59.39 ± 3.79 62.73 ± 4.12 63.56 ± 4.47

Sex
Image 

Type

Feature 

Type

SFAN
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Table 8.22:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using SFAND classifier.

Max 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39 51.07 ± 4.39

Mean 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01 57.86 ± 5.01

Median 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29 59.11 ± 5.29

Max 53.57 ± 4.12 53.93 ± 4.33 51.07 ± 3.36 53.75 ± 4.43 53.75 ± 4.43

Mean 46.07 ± 5.30 49.82 ± 5.30 43.21 ± 5.18 44.64 ± 5.58 45.71 ± 5.47

Median 44.46 ± 5.18 44.29 ± 4.62 43.04 ± 3.97 43.21 ± 5.18 43.21 ± 4.72

Max 60.98 ± 2.86 61.14 ± 5.50 61.82 ± 3.15 62.05 ± 3.21 62.05 ± 3.21

Mean 60.30 ± 4.38 60.38 ± 4.37 56.89 ± 2.06 60.45 ± 4.15 59.62 ± 5.00

Median 58.41 ± 2.69 58.41 ± 2.69 57.65 ± 4.61 56.67 ± 4.50 55.08 ± 3.27

Max 66.14 ± 4.45 62.73 ± 3.05 65.38 ± 3.31 63.64 ± 2.38 63.64 ± 2.38

Mean 58.64 ± 3.87 58.41 ± 4.06 59.39 ± 1.89 58.64 ± 2.96 58.71 ± 3.62

Median 57.73 ± 3.60 57.73 ± 4.00 61.82 ± 2.62 61.89 ± 3.73 61.89 ± 3.73

Sex
Image 

Type

Feature 

Type

SFAND
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8.4 Benchmarking on Datasets from UCI Machine Learn-

ing Repository

The goal of this experiment is to benchmark the new Bayesian network classifiers against

the results published by Friedman et al. (1997) in their work on TAN and other Bayesian

network classifiers. We already established that new Bayesian network classifiers are well

suited for analysis of cardiac SPECT data. In this experiment, we want to determine how

our new Bayesian network classifier algorithms perform on datasets from variety of do-

mains and how they compare to previous research. We use here the same datasets and

Table 8.23:UCI Machine Learning Repository datasets used for testing.

# CasesDataset # Attributes # Classes
Train Test

australian 14 2 690 CV-5
breast 10 2 683 CV-5
chess 36 2 2,130 1,066
cleve 13 2 296 CV-5
corral 6 2 128 CV-5
crx 15 2 653 CV-5
diabetes 8 2 768 CV-5
flare 10 2 1,066 CV-5
german 20 2 1,000 CV-5
glass 9 7 214 CV-5
glass2 9 2 163 CV-5
heart 13 2 270 CV-5
hepatitis 19 2 80 CV-5
iris 4 3 150 CV-5
letter 16 26 15,000 5,000
lymphography 18 4 148 CV-5
mofn-3-7-10 10 2 300 1,024
pima 8 2 768 CV-5
satimage 36 6 4,435 2,000
segment 19 7 1,540 770
shuttle-small 9 7 3,866 1,934
soybean-large 35 19 562 CV-5
vehicle 18 4 846 CV-5
vote 16 2 435 CV-5
waveform-21 21 3 300 4,700
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the same testing methods as published by Friedman et al. (1997). Table 8.23 presents the

datasets used for testing, number of attributes, number of classes, and number of cases in

each dataset. Friedman et al. (1997) used five-times cross validation (CV-5) for smaller

datasets and a single test for larger datasets. To ensure objectivity of comparison, we used

classification error data published by Friedman et al. (1997) rather than those that could be

produced by our version of the TAN classifier.

8.4.1 The Datasets

Here is a brief description of the datasets used for benchmarking; more information can be

found in (Blake et al., 1998).

australian Australian credit approval data.

breast Breast cancer databases from the University of Wisconsin Hospitals, Madison.

chessChess End-Game – King+Rook versus King+Pawn on a7 (usually abbreviated KRKPA7).

The pawn on a7 means it is one square away from queening. It is the King+Rook’s

side (white) to move.

cleve Cleveland heart disease database. Eight attributes are symbolic, six numeric. There

are two classes: healthy (buff) or with heart-disease (sick). The attributes are: age,

sex, chest pain type (angina, abnang, notang, asympt), resting blood pressure, serum

cholesterol in mg/dl, fasting blood sugar< 120 mg/dl (true or false), resting ECG

(norm, abnormal, hyper), max heart rate, exercise induced angina (true or false),

oldpeak = ST depression induced by exercise relative to rest, the slope of the peak

exercise ST segment (up, flat, down), number of major vessels (0-3) colored by fluo-

roscopy, thallium (normal, fixed defect, reversible defect).

corral An artificial dataset designed to show that decision trees might pick a really bad

attribute for the root. The target concept is(a1 xor a2) or (a3 xor a4), attributeA5 is
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correlated to the class variable and attributeA6 is irrelevant.

crx Credit card applications data.

diabetes Pima Indians diabetes database.

flare Classification of solar flares.

german German credit database.

glass Glass identification database.

glass2 Variant of the glass identification database with two classes and corresponding cases

removed.

heart Another heart disease database. It has the structure similar tocleve database, the

same classes and attributes.

hepatitis Survival of hepatitis patients.

iris This is perhaps the best known database to be found in the pattern recognition liter-

ature. The data set contains 3 classes of 50 instances each, where each class refers

to a type of iris plant. One class is linearly separable from the other 2; the latter are

NOT linearly separable from each other.

letter The objective is to identify each of a large number of black-and-white rectangular

pixel displays as one of the 26 capital letters in the English alphabet. The character

images were based on 20 different fonts and each letter within these 20 fonts was

randomly distorted to produce a file of 20,000 unique stimuli.

lymphography Classification of lymphography data.

mofn-3-7-10 Artificial dataset: 10 bits; 3 out of 7 should be on; remaining three are irrel-

evant (A1, A2,A10).
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pima Pima Indians diabetes database from the National Institute of Diabetes and Digestive

and Kidney Diseases.

satimage Landsat Satellite data: multi-spectral values of pixels in 3x3 neighborhoods in a

satellite image, and the classification associated with the central pixel in each neigh-

borhood.

segment Image segmentation database. The instances were drawn randomly from a database

of 7 outdoor images. The images were hand-segmented to create a classification for

every pixel.

shuttle-small The shuttle dataset contains 9 attributes all of which are numerical. Approx-

imately 80% of the data belongs to class 1.

soybean-largeSoybean disease databases.

vehicle Vehicle silhouettes: 3D objects within a 2D image by application of an ensemble

of shape feature extractors to the 2D silhouettes of the objects.

vote Voting records drawn from the Congressional Quarterly Almanac, 98th Congress, 2nd

session 1984, Volume XL: Congressional Quarterly Inc. Washington, D.C., 1985.

waveform-21 Artificial dataset from waveform generator. Three classes of waveforms.

Each class is generated from a combination of 2 or 3 “base” waves. All 21 attributes

include noise.

8.4.2 Experiments

The results of experiments are presented in Tables 8.24 to 8.29. As before, a number in

bold indicates the lowest error for a given dataset in a particular table. Numbers with

gray background indicate lowest error rate among all classifiers tested for a given dataset.

Bottom of each table shows two performance indicators for each of the classifiers: an
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Table 8.24:Benchmarks on UCI datasets: the reference classifiers and the best results

for the new Bayesian network classifiers.

australian 44.49 ± 2.99 15.07 ± 0.81 22.90 ± 1.58 18.70 ± 1.10 15.80 ± 1.24 11.74 ± 1.15

breast 35.00 ± 2.95 5.13 ± 0.96 3.96 ± 0.55 4.25 ± 1.25 3.08 ± 0.67 2.34 ± 0.43

chess 46.81 ± 1.53 0.47 ± 0.21 12.85 ± 1.03 7.60 ± 0.81 7.69 ± 0.82 4.03 ± 0.60

cleve 45.93 ± 2.63 28.38 ± 1.83 18.57 ± 2.55 20.94 ± 0.65 18.24 ± 0.33 16.20 ± 1.33

corral 43.63 ± 4.07 2.31 ± 2.31 14.12 ± 3.25 4.68 ± 2.26 3.94 ± 2.51 0.00 ± 0.00

crx 45.34 ± 2.11 14.08 ± 1.21 23.12 ± 1.73 16.23 ± 1.34 14.24 ± 1.16 11.94 ± 0.69

diabetes 34.88 ± 2.35 27.34 ± 1.08 25.00 ± 1.77 24.87 ± 0.98 24.48 ± 1.16 22.66 ± 0.68

flare 17.07 ± 2.05 17.45 ± 1.75 19.04 ± 1.44 17.26 ± 1.60 17.73 ± 1.86 16.32 ± 1.52

german 30.00 ± 1.14 28.70 ± 0.93 25.00 ± 1.57 27.80 ± 1.54 26.90 ± 1.54 24.90 ± 0.90

glass 64.50 ± 1.05 34.13 ± 3.54 52.81 ± 0.71 30.82 ± 2.64 32.22 ± 3.43 20.42 ± 1.09

glass2 46.69 ± 2.72 20.87 ± 3.60 40.55 ± 2.83 20.83 ± 1.71 22.08 ± 1.11 17.80 ± 2.26

heart 44.44 ± 3.88 21.48 ± 3.13 15.93 ± 2.24 17.04 ± 2.51 16.67 ± 2.48 14.81 ± 2.11

hepatitis 16.25 ± 3.19 18.75 ± 1.98 8.75 ± 2.50 15.00 ± 2.50 8.75 ± 2.50 6.25 ± 2.80

iris 74.67 ± 1.33 6.00 ± 1.25 4.67 ± 1.33 6.67 ± 1.05 6.00 ± 1.25 4.67 ± 1.33

letter 96.30 ± 0.27 12.16 ± 0.46 35.96 ± 0.68 16.56 ± 0.53 14.14 ± 0.49 12.78 ± 0.47

lymphography 45.20 ± 6.61 22.97 ± 0.59 19.56 ± 1.57 33.13 ± 3.37 14.97 ± 3.09 14.18 ± 1.64

mofn-3-7-10 22.66 ± 1.31 16.02 ± 1.15 13.57 ± 1.07 8.30 ± 0.86 8.89 ± 0.89 6.25 ± 0.76

pima 34.90 ± 1.88 26.18 ± 2.05 23.97 ± 1.61 24.87 ± 1.36 24.48 ± 1.27 22.92 ± 1.02

satimage 76.95 ± 0.94 14.35 ± 0.78 20.35 ± 0.90 22.45 ± 0.93 12.80 ± 0.75 12.60 ± 0.74

segment 86.88 ± 1.22 5.84 ± 0.85 20.65 ± 1.46 14.68 ± 1.63 4.42 ± 0.74 3.90 ± 0.70

shuttle-small 21.10 ± 0.93 0.57 ± 0.17 8.74 ± 0.64 1.14 ± 0.24 0.47 ± 0.15 0.36 ± 0.14

soybean-large 87.10 ± 1.03 7.82 ± 1.15 8.54 ± 0.91 41.83 ± 1.43 7.83 ± 1.02 6.22 ± 1.28

vehicle 77.19 ± 0.39 26.71 ± 0.85 55.79 ± 1.58 32.14 ± 2.92 30.37 ± 2.11 28.95 ± 2.29

vote 38.62 ± 2.64 4.14 ± 0.46 9.66 ± 0.86 10.80 ± 1.61 6.44 ± 0.28 3.22 ± 0.76

waveform-21 66.26 ± 0.69 29.30 ± 0.66 19.32 ± 0.58 24.62 ± 0.63 21.62 ± 0.60 21.04 ± 0.59

Average error

Av. advantage

14.57

64.80

13.51

67.70

20.94

52.71

18.53

57.43

49.71

0.00

16.25

58.84

Dataset Constant C4.5
Naïve 

Bayes

Best New 

BNC
TAN TAN-S
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Table 8.25:Benchmarks on UCI datasets: five-fold cross-validation error rate for FAN

classifier.

australian 12.46 ± 0.84 12.32 ± 0.76 12.46 ± 0.42 12.61 ± 0.54 12.61 ± 0.54

breast 2.49 ± 0.18 2.34 ± 0.43 2.78 ± 0.43 2.78 ± 0.43 2.78 ± 0.43

chess 7.32 ± 0.80 7.41 ± 0.80 6.75 ± 0.77 6.75 ± 0.77 6.75 ± 0.77

cleve 16.55 ± 1.64 18.58 ± 1.92 16.89 ± 2.20 18.24 ± 1.12 17.90 ± 1.14

corral 1.60 ± 1.60 0.00 ± 0.00 1.60 ± 1.60 1.60 ± 1.60 1.60 ± 1.60

crx 13.17 ± 0.92 13.01 ± 0.62 13.48 ± 0.70 13.48 ± 0.70 13.48 ± 0.70

diabetes 23.18 ± 0.59 24.09 ± 0.61 22.91 ± 0.77 23.05 ± 0.52 23.31 ± 0.64

flare 17.16 ± 1.68 17.26 ± 1.84 17.16 ± 1.68 17.16 ± 1.68 16.78 ± 1.58

german 25.40 ± 1.10 25.40 ± 1.26 24.90 ± 0.90 25.00 ± 1.05 25.00 ± 1.05

glass 27.55 ± 1.27 28.49 ± 0.78 27.08 ± 1.65 27.55 ± 1.27 27.55 ± 1.27

glass2 19.66 ± 1.89 19.64 ± 1.57 18.45 ± 2.03 17.82 ± 1.85 17.82 ± 1.85

heart 16.67 ± 2.48 17.04 ± 2.51 16.67 ± 2.48 16.67 ± 3.04 16.67 ± 3.04

hepatitis 8.75 ± 1.53 10.00 ± 1.53 8.75 ± 2.50 7.50 ± 2.34 7.50 ± 2.34

iris 5.33 ± 1.33 5.33 ± 1.33 5.33 ± 1.33 5.33 ± 1.33 5.33 ± 1.33

letter 13.30 ± 0.48 23.06 ± 0.60 16.42 ± 0.52 13.22 ± 0.48 13.30 ± 0.48

lymphography 14.21 ± 1.98 14.90 ± 2.33 14.87 ± 1.36 14.18 ± 1.64 14.18 ± 1.64

mofn-3-7-10 9.47 ± 0.92 12.50 ± 1.03 8.50 ± 0.87 8.11 ± 0.85 8.11 ± 0.85

pima 24.22 ± 1.40 24.62 ± 1.60 25.01 ± 1.65 24.22 ± 1.40 24.48 ± 1.69

satimage 12.60 ± 0.74 13.10 ± 0.76 12.60 ± 0.74 12.60 ± 0.74 12.60 ± 0.74

segment 5.84 ± 0.85 7.40 ± 0.94 6.23 ± 0.87 5.97 ± 0.85 5.97 ± 0.86

shuttle-small 0.41 ± 0.15 0.36 ± 0.14 0.36 ± 0.14 0.36 ± 0.14 0.36 ± 0.14

soybean-large 6.76 ± 0.99 6.76 ± 0.99 8.18 ± 0.51 8.72 ± 1.10 8.36 ± 0.36

vehicle 30.14 ± 2.79 29.54 ± 3.13 30.14 ± 2.79 30.61 ± 3.19 31.08 ± 3.31

vote 5.75 ± 0.51 5.75 ± 0.36 5.52 ± 0.43 5.75 ± 0.51 5.75 ± 0.51

waveform-21 21.04 ± 0.59 21.26 ± 0.60 21.13 ± 0.60 21.04 ± 0.59 21.23 ± 0.60

Average error

Av. advantage

13.62

66.82 65.19 66.85 67.32 67.36

13.64 14.41 13.77 13.61

SB LC LOO CV1010
Dataset

HGC

FAN
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Table 8.26:Benchmarks on UCI datasets: five-fold cross-validation error rate for STAN

classifier.

australian 13.48 ± 1.37 14.49 ± 1.39 12.75 ± 0.43 12.75 ± 0.78 12.75 ± 0.78

breast 2.78 ± 0.43 3.37 ± 0.86 3.08 ± 0.71 3.08 ± 0.71 3.08 ± 0.71

chess 6.47 ± 0.75 7.04 ± 0.78 4.32 ± 0.62 4.32 ± 0.62 4.32 ± 0.62

cleve 17.56 ± 1.54 18.58 ± 1.05 18.23 ± 1.31 17.23 ± 1.65 17.57 ± 0.44

corral 3.96 ± 1.79 3.91 ± 2.46 4.71 ± 2.88 4.71 ± 2.88 4.71 ± 2.88

crx 13.32 ± 0.70 12.71 ± 0.84 13.02 ± 0.80 13.32 ± 1.18 13.01 ± 0.75

diabetes 22.92 ± 0.68 25.13 ± 0.97 23.18 ± 0.51 22.92 ± 0.68 22.92 ± 0.68

flare 17.07 ± 2.05 16.70 ± 1.83 16.60 ± 1.96 17.07 ± 2.05 17.07 ± 1.80

german 26.20 ± 0.86 26.70 ± 0.58 25.70 ± 1.28 25.60 ± 1.07 25.40 ± 1.33

glass 27.55 ± 1.27 43.43 ± 2.62 27.09 ± 1.51 27.09 ± 1.51 27.09 ± 1.51

glass2 20.27 ± 2.10 21.50 ± 2.40 20.27 ± 2.10 20.27 ± 2.10 20.27 ± 2.10

heart 17.04 ± 2.51 17.04 ± 2.51 16.30 ± 1.98 18.15 ± 3.23 17.04 ± 2.51

hepatitis 7.50 ± 1.25 12.50 ± 0.00 6.25 ± 0.00 6.25 ± 2.80 6.25 ± 2.80

iris 6.00 ± 1.25 6.00 ± 1.25 6.00 ± 1.25 5.33 ± 1.33 6.00 ± 1.25

letter 13.24 ± 0.48 46.98 ± 0.71 13.22 ± 0.48 13.70 ± 0.47 13.70 ± 0.47

lymphography 14.92 ± 2.37 31.17 ± 4.07 16.94 ± 1.65 16.21 ± 1.97 16.21 ± 1.97

mofn-3-7-10 7.03 ± 0.80 6.25 ± 0.76 7.03 ± 0.80 6.25 ± 0.76 6.25 ± 0.76

pima 24.61 ± 2.12 26.17 ± 0.66 24.22 ± 0.87 24.35 ± 1.34 24.35 ± 1.34

satimage 12.60 ± 0.74 16.75 ± 0.84 15.50 ± 0.81 14.90 ± 0.80 14.85 ± 0.80

segment 4.68 ± 0.76 20.78 ± 1.46 4.42 ± 0.74 4.81 ± 0.77 4.81 ± 0.77

shuttle-small 0.41 ± 0.15 5.23 ± 0.52 0.47 ± 0.15 0.41 ± 0.15 0.41 ± 0.15

soybean-large 9.25 ± 1.07 36.29 ± 2.45 8.00 ± 1.19 7.11 ± 0.73 6.94 ± 0.75

vehicle 31.67 ± 2.06 34.51 ± 1.33 28.95 ± 2.29 29.66 ± 2.53 29.90 ± 2.45

vote 4.60 ± 0.51 5.52 ± 0.67 4.37 ± 0.43 3.68 ± 0.76 3.68 ± 0.76

waveform-21 21.15 ± 0.60 21.15 ± 0.60 21.15 ± 0.60 21.15 ± 0.60 21.15 ± 0.60

Average error

Av. advantage

13.59

66.88 57.86 67.49 67.62 67.70

13.85 19.20 13.67 13.61

Dataset
STAN

HGC SB LC LOO CV1010
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Table 8.27:Benchmarks on UCI datasets: five-fold cross-validation error rate for

STAND classifier.

australian 13.33 ± 1.56 14.20 ± 1.04 12.61 ± 1.31 11.74 ± 1.15 11.74 ± 1.15

breast 2.93 ± 0.33 2.64 ± 0.38 2.64 ± 0.38 3.66 ± 0.61 3.22 ± 0.60

chess 7.41 ± 0.80 7.41 ± 0.80 4.13 ± 0.61 4.03 ± 0.60 4.13 ± 0.61

cleve 16.89 ± 0.49 19.25 ± 1.34 17.90 ± 0.82 16.90 ± 1.22 17.92 ± 1.40

corral 3.91 ± 2.46 3.91 ± 2.46 3.91 ± 2.46 3.91 ± 2.46 3.91 ± 2.46

crx 12.86 ± 1.00 12.86 ± 0.60 12.56 ± 0.62 12.40 ± 0.93 12.40 ± 0.93

diabetes 22.92 ± 0.68 23.31 ± 0.71 23.83 ± 0.77 23.83 ± 0.77 23.83 ± 0.77

flare 16.32 ± 1.52 17.07 ± 2.05 16.70 ± 1.80 17.07 ± 2.05 17.07 ± 2.05

german 25.90 ± 0.75 27.90 ± 1.35 26.20 ± 0.82 25.70 ± 1.31 26.00 ± 1.21

glass 27.09 ± 1.51 34.10 ± 3.61 28.95 ± 1.48 28.48 ± 1.25 28.02 ± 1.17

glass2 20.23 ± 2.79 20.27 ± 2.10 20.27 ± 2.10 20.27 ± 2.10 20.27 ± 1.29

heart 16.67 ± 2.62 17.04 ± 2.51 16.67 ± 3.15 15.93 ± 2.16 15.56 ± 2.08

hepatitis 7.50 ± 3.64 10.00 ± 2.50 10.00 ± 3.75 8.75 ± 4.68 8.75 ± 4.68

iris 6.00 ± 1.25 6.00 ± 1.25 6.00 ± 1.25 6.00 ± 1.25 5.33 ± 0.82

letter 13.50 ± 0.48 25.96 ± 0.62 16.50 ± 0.52 12.86 ± 0.47 12.86 ± 0.47

lymphography 16.23 ± 1.32 20.94 ± 0.62 17.58 ± 1.31 16.23 ± 1.29 16.94 ± 3.95

mofn-3-7-10 7.03 ± 0.80 6.25 ± 0.76 7.03 ± 0.80 6.25 ± 0.76 6.25 ± 0.76

pima 24.35 ± 1.34 23.70 ± 1.33 23.96 ± 1.09 22.92 ± 1.02 23.44 ± 0.87

satimage 12.60 ± 0.74 12.60 ± 0.74 13.30 ± 0.76 12.90 ± 0.75 12.90 ± 0.75

segment 5.45 ± 0.82 7.40 ± 0.94 4.55 ± 0.75 3.90 ± 0.70 3.90 ± 0.70

shuttle-small 0.41 ± 0.15 0.47 ± 0.15 0.47 ± 0.15 0.47 ± 0.15 0.47 ± 0.15

soybean-large 9.25 ± 1.18 19.02 ± 3.13 8.18 ± 1.17 6.93 ± 1.40 6.93 ± 0.85

vehicle 30.73 ± 2.47 29.90 ± 3.08 30.25 ± 1.60 29.43 ± 1.95 29.19 ± 1.91

vote 5.52 ± 0.23 4.37 ± 0.43 4.14 ± 0.59 4.83 ± 0.43 3.45 ± 0.51

waveform-21 21.15 ± 0.60 21.15 ± 0.60 21.96 ± 0.60 22.30 ± 0.61 22.30 ± 0.61

Average error

Av. advantage

13.47

67.01 64.07 66.32 67.36 67.40

13.85 15.51 14.01 13.51

Dataset
STAND

HGC SB LC LOO CV1010
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Table 8.28:Benchmarks on UCI datasets: five-fold cross-validation error rate for SFAN

classifier.

australian 13.48 ± 1.56 13.91 ± 1.06 12.90 ± 0.42 12.90 ± 0.42 12.75 ± 0.49

breast 2.34 ± 0.43 2.34 ± 0.43 3.37 ± 0.55 3.37 ± 0.68 3.37 ± 0.68

chess 6.47 ± 0.75 7.04 ± 0.78 4.50 ± 0.64 4.32 ± 0.62 4.58 ± 0.64

cleve 17.21 ± 2.31 18.24 ± 2.30 17.21 ± 1.59 18.24 ± 0.96 17.90 ± 0.82

corral 2.40 ± 2.40 0.00 ± 0.00 1.60 ± 1.60 2.40 ± 2.40 2.40 ± 2.40

crx 13.02 ± 0.68 12.86 ± 0.82 13.01 ± 0.62 13.63 ± 0.81 13.63 ± 0.81

diabetes 23.18 ± 0.59 23.30 ± 0.49 22.92 ± 0.75 23.31 ± 0.70 23.31 ± 0.70

flare 17.70 ± 2.05 16.98 ± 2.14 16.98 ± 1.72 16.98 ± 1.80 16.98 ± 1.80

german 25.30 ± 1.55 26.40 ± 0.97 25.30 ± 0.25 26.10 ± 1.16 25.70 ± 1.37

glass 27.55 ± 1.27 20.42 ± 1.09 28.02 ± 1.38 28.02 ± 1.38 28.02 ± 1.38

glass2 20.27 ± 2.10 18.43 ± 2.19 18.43 ± 2.19 18.43 ± 2.19 18.43 ± 2.19

heart 15.93 ± 2.39 14.81 ± 2.11 17.41 ± 2.39 18.15 ± 3.01 17.04 ± 3.43

hepatitis 8.75 ± 1.53 10.00 ± 1.53 8.75 ± 1.53 6.25 ± 2.80 6.25 ± 2.80

iris 5.33 ± 1.33 4.67 ± 1.33 5.33 ± 1.33 5.33 ± 1.33 5.33 ± 1.33

letter 13.24 ± 0.48 24.76 ± 0.61 16.50 ± 0.53 13.70 ± 0.49 13.70 ± 0.49

lymphography 17.59 ± 1.99 20.92 ± 1.14 18.28 ± 0.99 15.59 ± 2.39 16.21 ± 1.97

mofn-3-7-10 7.81 ± 0.84 11.72 ± 1.01 7.03 ± 0.80 7.81 ± 0.84 7.81 ± 0.84

pima 24.87 ± 1.13 24.61 ± 1.08 24.48 ± 1.32 24.35 ± 1.31 24.35 ± 1.31

satimage 12.60 ± 0.74 16.75 ± 0.84 15.15 ± 0.80 16.30 ± 0.82 16.75 ± 0.84

segment 4.68 ± 0.76 7.47 ± 0.94 5.19 ± 0.80 4.94 ± 0.78 7.14 ± 0.93

shuttle-small 0.41 ± 0.15 5.43 ± 0.52 0.36 ± 0.14 0.47 ± 0.15 0.47 ± 0.15

soybean-large 9.07 ± 0.90 9.60 ± 1.76 9.60 ± 1.76 6.22 ± 1.28 9.60 ± 1.76

vehicle 32.85 ± 2.55 34.04 ± 1.26 29.30 ± 2.63 30.13 ± 2.43 29.90 ± 2.79

vote 4.69 ± 0.63 5.06 ± 0.46 4.14 ± 0.86 3.22 ± 0.76 3.22 ± 0.76

waveform-21 21.15 ± 0.60 21.13 ± 0.60 21.09 ± 0.60 21.15 ± 0.60 21.15 ± 0.60

Average error

Av. advantage

13.84

66.44 64.08 66.87 67.43 67.28

13.92 14.84 13.87 13.65

Dataset
SFAN

HGC SB LC LOO CV1010
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Table 8.29:Benchmarks on UCI datasets: five-fold cross-validation error rate for

SFAND classifier.

australian 13.04 ± 1.73 13.77 ± 1.15 11.74 ± 0.62 11.88 ± 0.99 11.88 ± 0.99

breast 2.49 ± 0.37 2.34 ± 0.43 3.22 ± 0.59 3.66 ± 0.61 3.81 ± 0.78

chess 7.41 ± 0.80 7.41 ± 0.80 4.13 ± 0.61 4.03 ± 0.60 4.03 ± 0.60

cleve 16.20 ± 1.33 18.58 ± 1.84 16.54 ± 1.42 16.90 ± 1.22 17.92 ± 1.40

corral 2.40 ± 2.40 0.00 ± 0.00 1.60 ± 1.60 1.60 ± 1.60 2.40 ± 2.40

crx 13.01 ± 0.86 13.17 ± 0.98 11.94 ± 0.69 12.70 ± 1.06 12.86 ± 1.05

diabetes 23.18 ± 0.51 24.09 ± 0.88 22.66 ± 0.68 23.57 ± 0.48 23.57 ± 0.48

flare 16.32 ± 1.52 17.07 ± 2.05 16.98 ± 1.66 17.07 ± 2.05 17.07 ± 2.05

german 25.50 ± 1.44 25.90 ± 1.22 25.70 ± 1.15 26.60 ± 1.64 26.60 ± 1.03

glass 27.09 ± 1.51 28.49 ± 0.78 28.48 ± 1.25 28.95 ± 1.48 28.95 ± 1.48

glass2 20.23 ± 2.02 17.80 ± 2.26 18.43 ± 2.19 18.43 ± 2.19 18.43 ± 2.19

heart 17.04 ± 2.95 17.04 ± 2.51 16.67 ± 2.27 15.56 ± 2.24 15.56 ± 2.24

hepatitis 7.50 ± 1.25 8.75 ± 1.53 8.75 ± 3.19 10.00 ± 2.50 8.75 ± 3.19

iris 5.33 ± 1.33 4.67 ± 1.33 5.33 ± 1.33 5.33 ± 1.33 5.33 ± 1.33

letter 13.30 ± 0.48 22.92 ± 0.59 16.62 ± 0.53 12.86 ± 0.47 12.78 ± 0.47

lymphography 16.23 ± 1.32 17.61 ± 1.40 16.25 ± 1.38 15.59 ± 1.48 16.21 ± 1.93

mofn-3-7-10 7.81 ± 0.84 11.72 ± 1.01 7.03 ± 0.80 7.81 ± 0.84 7.81 ± 0.84

pima 24.36 ± 1.31 23.96 ± 1.43 24.48 ± 1.40 23.57 ± 0.96 23.57 ± 0.96

satimage 12.60 ± 0.74 13.10 ± 0.76 13.30 ± 0.76 12.90 ± 0.75 16.30 ± 0.83

segment 5.71 ± 0.84 7.40 ± 0.94 5.32 ± 0.81 6.36 ± 0.88 6.36 ± 0.88

shuttle-small 0.41 ± 0.15 0.41 ± 0.15 0.52 ± 0.16 0.36 ± 0.14 0.36 ± 0.14

soybean-large 8.89 ± 0.88 9.78 ± 1.81 7.65 ± 0.82 6.40 ± 0.94 6.40 ± 0.94

vehicle 30.14 ± 2.79 29.54 ± 3.13 29.90 ± 1.67 30.02 ± 1.46 29.54 ± 1.59

vote 5.52 ± 0.43 5.98 ± 0.43 3.68 ± 0.76 4.37 ± 0.43 4.37 ± 0.43

waveform-21 21.15 ± 0.60 21.32 ± 0.60 21.34 ± 0.60 22.17 ± 0.61 22.17 ± 0.61

Average error

Av. advantage

13.72

67.20 65.32 67.51 66.99 66.90

14.51 13.53 13.5513.71

Dataset
SFAND

HGC SB LC LOO CV1010
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average error rate (lower is better) and an average advantage ratio (higher is better). The

advantage ratio compares performance of a classifier to the constant classifier and is given

by Eq. (8.1).

Table 8.24 contains summary of the classification results. ColumnTAN-FGG contains

results published by Friedman et al. (1997) for a TAN classifier that does not use Dirichlet

priors. Acronym FGG stands for the first names of the authors of the TAN classifier:

Friedman, Geiger, and Goldszmidt. ColumnTAN-FGG-S contains results published by

Friedman et al. (1997) for a TAN classifier that uses Dirichlet priors (smoothing); all of the

αijk parameters were set to be the same and equal 5.

8.4.3 Discussion of the Results

We have selected three new classifiers, each using different search algorithm, and compared

them graphically to the reference classifiers. The reference classifier used for comparison

are C4.5, näıve Bayes, TAN-FGG, and TAN-FGG-S classifier. The new classifiers used

for graphical comparison are FAN-LOO, STAND-LOO, and SFAND-LC, presented in fig-

ures 8.4, 8.5, and 8.6, respectively. As before, axis in each diagram represent percentage

error rate. The pink diagonal line represents equality of error for the two compared classi-

fiers. A blue mark represents a dataset. When a blue mark is above the line it means that

a reference classifier compared to a new classifier had larger error for that dataset. When a

mark is below the diagonal pink line it means that the new classifier had larger error.

Overall Performance of the New Bayesian Network Classifiers

Fig. 8.7 shows average error rate and average advantage ratio of the new classifiers com-

pared to the two best reference classifiers, TAN-FGG-S and C4.5. Notice, that only in

some cases when new algorithms are combined with Standard Bayesian measure (SB) they

perform equal or worse than the reference classifiers. For all other quality measures and all

search algorithms the performance is better than that of the reference classifiers.
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(a) FAN-LOO versus C4.5 classifier.
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(b) FAN-LOO versus näıve Bayes classifier.
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(c) FAN-LOO versus TAN-FGG classifier.
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(d) FAN-LOO versus TAN-FGG-S classifier.

Figure 8.4:Comparison of FAN-LOO inducer versus C4.5, naı̈ve Bayes, TAN-FGG, and

TAN-FGG-S inducers on datasets from UCI Machine Learning Repository.
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(b) STAND-LOO versus näıve Bayes classifier.
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(c) STAND-LOO versus TAN-FGG classifier.
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(d) STAND-LOO versus TAN-FGG-S classifier.

Figure 8.5:Comparison of STAND-LOO inducer versus C4.5, naı̈ve Bayes, TAN-FGG,

and TAN-FGG-S inducers on datasets from UCI Machine Learning Reposi-

tory.
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(a) SFAND-LC versus C4.5 classifier.
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(b) SFAND-LC versus näıve Bayes classifier.
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(c) SFAND-LC versus TAN-FGG classifier.
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(d) SFAND-LC versus TAN-FGG-S classifier.

Figure 8.6:Comparison of SFAND-LC inducer versus C4.5, naı̈ve Bayes, TAN-FGG,

and TAN-FGG-S inducers on datasets from UCI Machine Learning Reposi-

tory.
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Figure 8.7:Benchmarks on UCI datasets: Average error rate and average advantage ratio

for the new classifiers and for best reference classifiers: TAN-FGG-S and

C4.5.

To quantitatively compare the performance of the new family of Bayesian network

classifiers to the reference classifiers (the constant classifier, C4.5, naı̈ve Bayes, TAN-FGG,

and TAN-FGG-S) we used approach similar to the one presented in Section 8.2. We used

the same three indicators:

Dataset error rate indicates for how many datasets the error rate of the best new Bayesian

network classifier was better (lower), equal to, or worse (higher) than that of the best

reference classifier for a given dataset.

Average error rate indicates how many of the new Bayesian network classifiers had av-

erage error rate that is better (lower), equal to, or worse (higher) than that of the best

(lowest) average error rate of the reference classifiers.

Average advantage ratio indicates how many of the new Bayesian network classifiers had

average advantage ratio, Eq.( 8.1), that is better (higher), equal to, or worse (lower)

than that of the best (highest) average advantage ratio of the reference classifiers.
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Table 8.30:Comparison of the new family of Bayesian network classifiers to reference

classifier (the constant classifier, C4.5, naı̈ve Bayes, TAN-FGG, and TAN-

FGG-S) using datasets from UCI Machine Learning Repository. A number

indicates how many times the best of the new classifiers was better, equal, or

worse than the best of reference classifiers.

Indicator Better Equal Worse
Dataset error rate 20 80% 1 4% 4 16%
Average error rate 21 84% 0 0% 4 16%

Average advantage ratio 22 88% 0 0% 3 12%

The indicators are shown in Table 8.30. The table demonstrates that the new family of

Bayesian network algorithms produces classifiers that are performing significantly better

than the reference classifiers in a variety of domains. Notice, that if we excluded classifier

using Standard Bayesian quality measure (SB) the average error rate and average advantage

ratio for new classifiers would always be better (100%) than the reference classifiers.



Chapter 9

Conclusions and Suggestions for Future

Research

In this dissertation, we dealt with the issues of automating cardiac SPECT image interpreta-

tion: creation of a database of training cases, processing of 3D SPECT images and feature

extraction, and use of a new family of Bayesian network classifiers for learning diagnosis

of left ventricular perfusion.

9.1 Summary of the Results

In chapter 3 we discussed the process of knowledge discovery in databases. Creation of the

new cardiac SPECT database has been described there. It discussed database organization

and initial cleaning of data.

In chapter 4 we discussed process of inspecting cardiac SPECT images performed by

a cardiologist. Then we used it as an inspiration for feature extraction process based on

building a model of normal left ventricle.

In chapter 7 we introduced a new synthesis of Bayesian network classifiers and pre-

sented five new search algorithms created that were using this synthesis. It also demon-

145
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strated that näıve Bayes and TAN classifier are special cases of the synthesis.

In chapter 8 we presented empirical evaluation of the new family of algorithms. It was

demonstrated that the new classifiers are able to deal better than existing algorithms with

the high level of noise present in the cardiac SPECT data and features extracted from 3D

SPECT images. It was also shown that the new algorithms outperform existing ones on

datasets from UCI Machine Learning Repository.

9.2 Suggestions for Future Research

• Creation of a larger database that would contain statistically significant number of

examples for each diagnosed left ventricular perfusion defect.

• Use of information about motion of the left ventricle (gated-pool cardiac SPECT)

and use of physics-based deformable models.

• Consider improved system for recording the information at a hospital about diag-

nosed cases.

• New quality measures for scoring the Bayesian networks for classifiers, for instance,

a variant of the LC measure with a penalty for the network size.

• Heuristics for adjustments of network parameter priors based on information about a

training dataset.

9.3 Concluding Remarks

The most significant contribution of this research was the introduction of the new family

of Bayesian network classifiers. High performance of these classifiers was demonstrated,

not only on cardiac SPECT data, but also on data from a variety of domains using UCI

Machine Learning datasets.
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Unfortunate conclusion of this research was that the number of available cardiac SPECT

imaging cases was not sufficiently large to reliably classify left ventricular perfusion, and

that a significantly larger number needs to be collected before attempting practical applica-

tions.
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Appendix A

Database, Visualization, and Feature

Extraction Software

A.1 Database

The original data, containing patient information and cardiologist’s evaluation of SPECT

images, was recorded at Medical College of Ohio (MCO) in an MS Excel spreadsheet. Thus

natural choice for the database software was MS Access. The spreadsheet was converted

into a single table with the same format to allow easy addition of new patient records as they

became available. The records in the table were indexed using combination: the SPECT

study date and the patient hospital number.

The MS Access database, however, was used only as the main repository and for manual

operation on data. Automated operations on data from non-Microsoft software proven to

be very unreliable, despite that, over time, we went through a number of updates of Access

drivers from Microsoft. Thus, for automated operation the required portion of data were

converted to Paradox database format, maintaining the same structure of the data.
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A.1.1 Cardiac SPECT Images

The cardiac SPECT images obtained from MCO were stored in a proprietary format. We

reverse-engineered the format to the extent that allow as reading on image data and patient

identification data stored with images. A C++ class library for manipulation of cardiac

SPECT images has been created.

The images were stored at MCO one patient case per directory. The directory typically

contained preprocessed 3D SPECT images, additional patient information related to image

creation, and in some cases the original unprocessed projection data (data form SPECT

camera before 3D reconstruction through back-projections). There were typically six 3D

SPECT images per directory: short axis view, horizontal long axis view, and vertical long

axis view for rest and stress study.

We maintained the case-per-directory organization. We decided to keep the actual im-

age data outside of the database (did not included them into tables). We renamed each

image directory using combination of SPECT data and patients’ hospital number. The

directories were grouped by year and month. Having this organization, it was easy to

automatically locate images knowing SPECT date and hospital number. Additionally, to

optimize SQL queries, we added to the database a table containing list of all available

images. The table had two fields SPECT date and patients’ hospital number. The image

data were quite large, over 3GB. To conserve space, each image file was individually com-

pressed using, freely available,gzip utility. We decided to usegzip format since it provides

good compression and since C++ libraries for compression/uncompression ingzip format

are freely available. After compression images unoccupied less then 0.7GB.

There were more than 8,000 image files. We have created, using Borland C++Builder,

a number of fully automated software utilities for maintenance of the images. These in-

cluded:

• Verification whether files in an image directory correspond to a single case.
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• Renaming of the directories, based on information read from images, to comply with

convention described above (SPECT date, hospital number)

• Automated creation of image indexes in the database or verification that information

in existing indexes is correct.

A.1.2 Other Structures in the Database

The database contained almost any information generated during model building, feature

extraction, and classification stored. Each information type was stored in dedicated tables:

• Information about created models of normal left ventricle.

• Transformation needed to register each of the SPECT images to corresponding model

of normal left ventricle and the quality of correlation.

• A number of tables corresponding to various feature extraction experiments. The

final experiments were reported in Chapter 8.

• Datasets generated from SPECT data used for experiments described in Chapter 8.

• Results of experiments described in Chapter 8.

A.2 Visualization

A.2.1 SPECT Image Browser

As described in Chapter 3, the first two steps of a knowledge discovery process is under-

standing the problem domain and understanding the data. One of the first software applica-

tions we created was for visualization of the 3D SPECT images. This tool is called SPECT

Image Browser. It is shown in Fig. A.1. The tool displays, side by side, a slice of a SPECT

image and a 3D rendering of image iso-surface. SPECT date and patient number contained
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Figure A.1:SPECT Image Browser – a tool for visualization of 3D SPECT images.

in the image is also displayed. User can specify iso-surface level (threshold level) or it can

be determined automatically. User has an option to display the threshold level overlayed

on the slice image. It is shown in Fig. A.1 with a red line. The tool can automatically con-

vert between axis views (short axis, horizontal long axis, vertical long axis). Image slices

can be extracted to individual files. The 3D image can be converted to TIFF stack format.

The 3D rendering can be saved in VRML (Virtual Reality Markup Language) and can be

then displayed with a number of VRML viewers or Internet browsers. We have used the

Visualization Toolkit (VTK) library for 3D rendering (Schroeder et al., 1998). The SPECT

Image Browser was designed for inspection of individual 3D SPECT images.
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Figure A.2:Patient data display window of the SPECT database browser.

Figure A.3:Main image display window of the SPECT database browser.
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Figure A.4:Slice display windows of the SPECT database browser.

A.2.2 SPECT Database Browser

We have created another tool called SPECT Database Browser to enable visualization of

most important patient information together with corresponding 3D SPECT images. The

information is presented to the user in a number of windows that can be opened or closed

as needed. The main window displays textual patient information, see Fig. A.2. The image

display window shows SPECT images corresponding to case displayed in the main window.

Both, rest and stress, images are shown together. The window displays all available axis

views and 3D renderings based on short axis views, see Fig. A.3. For each of axis views,

the user can open a window showing slices is row format, see Fig. A.4.

A.3 Model Building and Feature Extraction

We have created a C++ class library that implements 3D image registration, model cre-

ation, and feature extraction procedures described in Chapter 4. The library also includes

all necessary database communication classes. A simple user interface, created in Borland
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C++Builder, allows interaction with the library. The interface allows for automatic pro-

cessing of a number of selected images by customizing appropriate SQL queries executed

by the software.

A.4 Creation of Datasets for Classifier Learning

The datasets based on feature extraction were automatically created by software described

in previous section. Datasets for the first experiment described in Chapter 8 were created

by manual execution of SQL queries in MS Access; since all the data needed were already

present in the database.



Appendix B

BNC: Bayesian Network Classifiers

Toolbox

The software for learning Bayesian network classifier (BNC) has been implemented inde-

pendently for the SPECT database, visualization, and feature extraction software described

in Appendix A. The intention was to make it convenient to use BNC for classification in

other domains.

We decided to implement BNC in Java programming language to ensure easy porta-

bility to various operating systems. We used Java 2 and tested the software under MS

Windows NT, MS Windows 95/98, Linux, and Solaris operating systems. Although, not

tested, the software should run on any other operating systems capable of running Java 2.

The main part of BNC is a class library implementing all of the new Bayesian network

classifier learning algorithms described in Chapter 7, naı̈ve Bayes (Duda and Hart, 1973),

and TAN (Friedman et al., 1997).

BNC provides command line interface to the library. Command line interface allows

for easy running of multiple learning algorithms on number of datasets. An example of

Bourne Shell script that was used to test UCI datasets using five-fold cross validation, see

Section 8.4, is presented in Fig. B.1. This single script executed the BNCCrossVal utility
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#!/bin/sh

DATASETS="australian breast cleve crx diabetes german glass\
glass2 heart iris pima soybean-large vehicle vote"

ALGOR="fan stan stand sfan sfand"
QM="HGC SB LC LOO CV1010"

for d in $DATASETS; do
for a in $ALGOR; do

for q in $QM; do
java CrossVal -f cv5/$d -a $a -q $q -s 9 -l UCI;

done;
done;

done

Figure B.1:Bourne Shell script that was used to test all 25 new Bayesian network classi-

fiers on 14 UCI datasets using five-fold cross validation. The script executes

350 cross validation tests. The results are automatically logged to a database

table named UCI.

350 times.

B.1 BNC Utilities

Command line interface to BNC class library consists of three utilities:Classifier, Cross-

Val, andDatasetInfo. They are described in following sections.

B.1.1 Classifier and CrossVal Utilities

Classifier utility is used to learn and test a Bayesian network classifier.CrossVal utility

performs a cross-validation test of a Bayesian network classifier, it assumes that cross val-

idation datasets are already generated and attempts to read them using given file stem. The

file name format isfilestem-repetition-fold. For instance for file stemvote the file names

could bevote-0-0.* , vote-0-1.* , etc. TheGenCVFiles utility from MLC++ li-
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brary (Kohavi et al., 1997) can be used for generation of cross validation files. It generates

cross validation file names in the format described above. Both,Classifier andCrossVal

utilities accept the same command line options:

-a algor name Bayesian network classifier algorithm choices:naive (for näıve Bayes),

TAN, FAN, STAN, STAND, SFAN, SFAND.

-c classname Name of the class variable. The default value isclass.

-d Print debugging information.

-f filestem Load test data in C4.5 format (.names + .data + .test ). ForClassifier the

files will be: filestem.names – file with specification of attributes,filestem.data

– file with training cases, andfilestem.test – file with test cases. ForCrossVal

the file names will befilestem-?-?.names , filestem-?-?.data , andfilestem-?-

?.test .

-l table-nameLog result to database tabletable-name. It is assumed that results are logged

to a database with ODBC namejtest.

-n filename Save constructed network(s) tofilename.bif . File is saved in BIF 0.15 for-

mat.

-q quality-measureBayesian network quality measure choices: HGC – Heckerman-Geiger-

Chickering, SB –Standard Bayesian, LC – Local criterion, LOO – leave-one-out

cross validation, CV10 – ten-fold cross validation, CV1010 – ten-fold ten-times cross

validation.

-s number Number of smoothing priors to test; has to be an integer greater or equal to

zero.

-t Print execution time in milliseconds.
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Classifier tester

File stem: vote
Algotithm: FAN
Quality measure: Leave-one-out cross validation

Error = 5.926% +- 2.04% (94.074%) [127/8/135]

Figure B.2:Sample output ofClassifier utility.

For example, to test FAN classifier using LOO quality measure on datasetvote follow-

ing command line can be used:

java Classifier -a FAN -q LOO -f vote

An example ofClassifier output is shown in Fig. B.2. Number after-+ is an estimate of

the standard deviation according to binomial model. The number in parenthesis is accu-

racy (100%-error), the numbers in square brackets are: number of correct classifications,

number of false classifications, and total number of cases in test set, respectively.

B.1.2 DatasetInfo Utility

The DatasetInfo utility is used to print information about a dataset. It takes a single at-

tribute: the file name stem. It assumes that the file is saved in C4.5 format.DatasetInfo

prints information about number of classes and number of attributes in the dataset (defined

in file filestem.names ). It also prints frequency of each of the classes in train and test

datasets. A sample output ofDatasetInfo utility is shown in Fig. B.3.
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DatasetInfo

Filestem: ../db/vote
Number of classes = 2
Number of attributes = 16

File ’../db/vote.all’ has 435 cases.
democrat : 267 [61.38%]
republican : 168 [38.62%]

File ’../db/vote.data’ has 300 cases.
democrat : 184 [61.33%]
republican : 116 [38.67%]

File ’../db/vote.test’ has 135 cases.
democrat : 83 [61.48%]
republican : 52 [38.52%]

Figure B.3:Sample output ofDatasetInfo utility.


