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A new family of Bayesian network classifiers is introduced and demonstrated to outper-
form existing classifiers. Of particular interest is use of these classifiers for interpretation
of cardiac SPECT images. High classification performance on databases from a variety of
other domains is also demonstrated.

Cardiac SPECT (Single Photon Emission Computed Tomography) is a diagnostic tech-
nique used by physicians for assessing the perfusion of the heart’s left ventricle. A physi-
cian reaches the diagnosis by comparing SPECT images taken from a patient at rest and
at maximum stress. Interpretation of images by strictly visual techniques is burdened with
error and inconsistency. Thus, assistance in quantifying and automating the diagnosis is
sought.

An important issue in automating the diagnosis is classification of left ventricle perfu-

sion into a number of predetermined categories. The goal of this dissertation is to investi-



gate the use of Bayesian methods for construction of classifiers that would assist in inter-
pretation of cardiac SPECT images. These images and their descriptions are characterized
by a significant amount of uncertainty. Bayesian methods build models by approximating
the probability distribution of the variables in the problem domain; they are naturally well
suited to deal with uncertainty.

This research consisted of three main parts. (1) Data warehousing — assembling car-
diac SPECT images and patient records into an easily accessible database and creating
software manipulation of SPECT images. (2) Three-dimensional image processing — im-
plementation of custom algorithms for extraction of features from SPECT images. (3)
Learning Bayesian network classifiers — research of novel machine learning algorithms
that use Bayesian techniques for creation of robust classifiers.

The main contribution of this work is creation of a new family of Bayesian network
classifier — their high performance classifying left ventricular perfusion is demonstrated.
Additionally, it is shown that they outperform existing Bayesian network classifiers and
machine learning algorithm C4.5 using data from University of California at Irvine Repos-
itory of Machine Learning Databases. Among other contributions is a method for auto-
mated extraction of features from cardiac SPECT images based on the creation of models
of normal left ventricles, software for visualization of cardiac SPECT images, automated

feature extraction, and creation of Bayesian network classifiers.
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Chapter 1

Introduction

Cardiac SPECT (Single Photon Emission Computed Tomography) is a diagnostic tech-
nique used by physicians for assessing the perfusion of the heart’s left ventricle. A physi-
cian reaches the diagnosis by comparing SPECT images taken from a patient at rest and
at maximum stress. It has been shown that interpretation of images by strictly visual tech-
niques is burdened with error and inconsistency. For that reason, assistance in quantifying
and automating the diagnosis has been sought. One of the issues in automating the diag-
nosis is classification of left ventricle perfusion into a number of predetermined categories.
The goal of this dissertation is to investigate the use of Bayesian methods for construction
of classifiers that would assist in interpretation of cardiac SPECT images. These images,
and their descriptions, are characterized by a significant amount of uncertainty. Bayesian
methods build models by approximating the probability distribution of the variables in the
problem domain; they are naturally well suited to deal with uncertainty.

This dissertation research consists of three main parts:

Data warehousing — assembling cardiac SPECT images and related patient records into
an easily accessible database and creating software for reading the SPECT images
stored in a proprietary format. Cardiac SPECT images have been collected from

Medical College of Ohio and organized together with the relevant patient’s record



into a rational database. The objective was to enable easy access to data through use
of SQL queries. Collected data were cleaned and preprocessed for further use by

image processing and classification.

Three-dimensional image processing- design and implementation of algorithms for ex-
traction of features from SPECT images. The SPECT images cannot be directly used
for classification. A typical SPECT image consists of about 133,072 voxels, each
having up to 65,536 possible gray level values. Three-dimensional image processing
is used to analyze information present in a SPECT image and express it by a small
number of features representing information most relevant to the diagnosis of left
ventricle perfusion. A model of a normal left ventricle has been created and used for

creation of features extraction algorithms.

Learning Bayesian network classifiers— research of novel machine learning algorithms
that use Bayesian techniques for creation of robust classifiers. A Bayesian network
is a formalism for representing a joint distribution of a set of random variables. A
Bayesian network can be used for classification by identifying one of the nodes with
the class variable and other nodes with attribute variables. Classification is performed
by computing marginal probability distribution of the class variable. Established
methods for learning Bayesian networks are concerned with good approximation
of the joint probability distribution. Good criteria for constructing a network that
accurately represents the probability distribution of the analyzed problem will not
necessarily lead to a good classifier. Our research was concerned with the creation of
Bayesian network learning methods that are specifically designed for the creation of
classifiers. A new family of Bayesian network classifier has been created and used

for classification of left ventricular perfusion.



1.1 Contributions
The following are the main contributions of this dissertation:

New family of Bayesian network classifiersA new approach to synthesis of Bayesian
network search algorithms specifically designed for creation of classifiers is intro-
duced. We present five new search algorithms created using the new synthesis. We
also show that rise Bayes (Duda and Hart, 1973) and TAN classifiers (Friedman,
Geiger, and Goldszmidt, 1997) are special cases of the synthesis. We demonstrate
that classifiers based on the new search algorithms outperform existing ones includ-

ing tree induction algorithm C4.5 (Quinlan, 1993).

Automated extraction of features from cardiac SPECT imagesA rigid model of a nor-
mal left ventricle is created and used for automated registration of SPECT images.
Features are extracted from SPECT images mimicking process performed by a physi-

cian.

Cardiac SPECT database4,828 patient records, 8,142 SPECT images and related files,

collected for 728 patients, were organized into a coherent database.

Software New software for browsing the cardiac SPECT database, visualization of 3D
SPECT images, automated feature extraction, and learning with the new family of

Bayesian network classifiers has been created.

1.2 Organization

Chapter 2 briefly describes the function of the human heart, most common heart diseases
and a technique for diagnosing left ventricular perfusion — cardiac SPECT imaging. The
knowledge discovery process and the creation of the SPECT image database is the content

of Chapter 3. Preparation of data for classification — creation of models of normal left



ventricle and the extraction of features from cardiac SPECT images is presented in Chap-
ter 4. Chapter 5 contains an introduction to Bayesian networks. Issues specific to Bayesian
network classifiers are introduced in Chapter 6. The main contribution of this work — a
new family of Bayesian network classifiers is presented in Chapter 7. Experimental results
demonstrating classification of the left ventricular perfusion and benchmarking of the new
classifiers against existing ones are described in Chapter 8. Software developed to make

this dissertation research possible is described in Appendices A and B.



Chapter 2

Cardiac SPECT Imaging

2.1 Human Heart

The heart is one of the most important organs in the human body, a central part of the cir-
culatory system. The heart is a dual pump circulating blood through two separate systems,
each consisting of aatrium and aventricle(Fig. 2.1). Blood from the body returns to the
right atrium through two large veins, tiseperiorandinferior venae cavadn addition the

blood that has supplied the heart muscle is drained directly into the right atrium through
the coronary sinus. Return of venous blood to the right atrium takes place during the entire
heart cycle of contraction and relaxation, and to the right ventricle only during the relax-
ation part of the cycle, callediastole When both right heart cavities constitute a common
chamber; near the end of diastole, contraction of the right atrium completes the filling of
the right ventricle with blood (Fig. 2.2). Rhythmic contractions of the right ventricle expel
the blood through the pulmonary arteries into the capillaries of the lung where the blood
receives oxygen. The lung capillaries then empty into the pulmonary veins, which in turn,
empty into the left atrium. Pulmonary venous return to the left atrium and left ventricle
proceeds simultaneously in the same manner as the venous return to the right heart cavi-

ties. Contraction of the left ventricle rhythmically propels the blood into the aorta and from
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Figure 2.1:Human heart (Encarta, 1999).

there to all arteries of the body, including the coronary arteries which supply the heart mus-
cle. The blood forced from the ventricles duriggstole or contraction, is prevented from
returning during diastole by valves at the openings of the aortic and pulmonary arteries.
Disorders of the heart kill more Americans than any other disease. They can arise
from congenital defects, infection, narrowing of the coronary arteries, high blood pressure,
or disturbances of heart rhythm. The major form of heart disease in Western countries is
atherosclerosisin this condition, fatty deposits callgdiaque composed of cholesterol and
fats, build up on the inner wall of the coronary arteries. Gradual narrowing of the arteries
throughout life restricts the blood flow to the heart muscles. Symptoms of this restricted
blood flow can include shortness of breath, especially during exercise, and a tightening pain
in the chest calledngina pectoris The plague may become large enough to completely
obstruct the coronary artery, causing a sudden decrease in oxygen supply to the heart. Ob-
struction can also occur when part of the plaque breaks away and lodges farther along in the

artery. These events are the major causdseaft attack or myocardial infarction which



(a) Relaxation — diastole.

(b) Contraction — systole.

Figure 2.2:Heart’s cycle (Encarta, 1999).

is often fatal. Persons who survive a heart attack must undergo extensive rehabilitation and
risk a recurrence. Many persons having severe angina because of atherosclerotic disease
can be treated with drugs, that enable the heart to work more efficiently. Those who do not
obtain relief with pharmacologic means can often be treated by surgery.

The main interest of this narrative is automation of a technique for delineation of areas
of reduced blood flow in the heart calledrdiac SPECT imagingdrhis technique visualizes

the flow of a radioactive isotope of the elem#mdlliuminto heart muscle. A computerized



camera records the extent of thallium penetration during the systole-diastole cycle of the

heart, showing areas of reduced blood perfusion and tissue damage.

2.2 Cardiac SPECT Imaging

Cardiac single photon emission computed tomography (SPECT) provides a clinician with
a set of three-dimensional images to visualize distribution of radioactive counts within
the myocardium (the middle layer of the heart wall; heart muscle) and surrounding struc-
tures (Cullom, 1994). Images represent radioactive count densities within the heart muscle
which are proportional to muscle perfusion, in particular of the left ventricle (LV), which

is normally thicker than other cardiac structures. Two studies are performed after a patient
is injected with a tracer, one at rest (rest image) and one after injection during maximal
stress (stress image). The studies are represented by two, 3-D density images. Clinicians
compare the two images in order to detect abnormalities in the distribution of blood flow
within the left ventricular myocardium.

Visualization of the SPECT images is complicated by the fact that three-dimensional
density images cannot be directly presented using contemporary display devices that pro-
duce two-dimensional pictures; some kind of transformation has to be performed. This
transformation introduces a reduction of information. There are two practical alterna-
tives: two-dimensional density images or three-dimensional surface renderings (Garcia,
Ezquerra, DePuey, et al., 1986). The first preserves most of the intensity information,
but three-dimensional relations are only implicit. The second provides explicit three-
dimensional information explicit in which density is represented indirectly through the
shape of the 3-D surface and/or its color (Faber, Akers, Peshock, and Corbett, 1991; Faber,
Cooke, Peifer, et al., 1995).

Typically, the LV is visualized as sets of two-dimensional intensity slices. When sliced

perpendicular to the long axis of the left ventricle, the view is tersiealt axis Slices
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Figure 2.3:2D slices of 3D SPECT images.

parallel to the long axis of the LV are calle@rtical long axis andhorizontal long axis
views (Fig. 2.3). Three-dimensional relations are only implicit in the views; it is left to the
interpreting physician to mentally reconstruct them as a 3-D object.

Another family of 2-D visualization methods is based on projections in non-Cartesian
coordinate systems. The three-dimensional left ventricleverappecdn a two-dimensional
plane by radial projection into spherical coordinates (Goris, Boudier, and Briandet, 1987),
or combination of spherical and cylindrical coordinates (Van Train, Garcia, Cooke, and
Areeda, 1994). They are generally referred tdoal's-eyemethods since they produce
pairs of round images (rest and stress), see Fig. 2.4.

A number of 3-D surface rendering methods exists. They are frequently used in asso-
ciation withgated blood-pool SPEC{Corbett, 1994) to produce motion sequences of the

left ventricle function. This is a very intensely researched area; however, in this narrative
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Rest Stress

Figure 2.4:Bull's-eye images of the left ventricle.

only static SPECT images are addressed.

A number of techniques have been developed to aid in classification of the images; most
of them are concerned with visualization. However, it has been shown that interpretation
of images by strictly visual techniques is fraught with error and inconsistency (Cuaron,
Acero, Cardenas, et al., 1980). For this reason, assistance in diagnosis has been sought
through the use of computer-derived image display and quantitation. Such quantitation
has demonstrably decreased the variability in image interpretation (Francisco, Collins, Go,
etal., 1982).

One of the few examples of automatic interpretation of SPECT images is the PERFEX
expert system (Ezquerra, Mullick, Cooke, Garcia, and Krawczynska, 1992). This system

infers the extent and severity of coronary artery disease from the perfusion distribution.



Chapter 3

Knowledge Discovery in the Cardiac

SPECT Imaging Database

3.1 Knowledge Discovery in Databases

The overall problem addressed in this narrative, “Bayesian Learning for Cardiac SPECT
Image Interpretation”, is an example of the process knowKraswvledge Discovery in
Databasesor KDD. At an abstract level, the KDD field is concerned with the develop-
ment of methods and techniques for making sense of data (Fayyad, Piatetsky-Shapiro,
and Smyth, 1996). The KDD process consists of the following steps (Cios, Teresinska,

Konieczna, Potocka, and Sharma, 2000; Cios, Pedrycz, and Swiniarski, 1998):
1. Understanding the problem domain
e determination of objectives
e assessment of the current situation

e determination of data mining objectives, and

e preparation of the project plan

2. Understanding the data

11
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collection of initial data

description of the data

initial exploration of the data, and

verification of the quality of the data
3. Preparation of the data

e data selection
e data cleaning
e constructing and merging the data, and

¢ reformatting of the data
4. Data mining

¢ selection of several data mining methods
¢ building the model, and

e model assessment
5. Evaluation of the discovered knowledge

e assessment of the results versus the objectives
e keeping the approved models
e reviewing the entire knowledge discovery process, and

e determining actions to be taken based on the achieved results
6. Using the discovered knowledge

e implementation and monitoring plans
e generation of a final report, and

e overview of the entire project for future use and improvements
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In our previous work, (Sacha, Cios, and Goodenday, 2000), we discussed in detail the
relation of these steps to the problem of automating cardiac SPECT diagnosis. The work

presented here is concentrated on particular aspects of the KDD process:

e creation of the database of cardiac SPECT data and 3D SPECT images, that can be
considered a step partially preceding the KDD process. This discussed later in the

chapter.

e data preparation, and in particular extraction of features from 3D cardiac SPECT

images. This is discussed in detail in Chapter 4.

e creation of new data mining algorithms that are capable of efficiently dealing with a

high level of uncertainty present in the data. This the subject of Chapter 7.

e data mining step: application of newly created and existing algorithms for building
models of the cardiac SPECT data including diagnosis of left ventricular perfusion.

Data mining step is covered in Chapter 8.

Before we can apply algorithms for learning Bayesian network classifiers, the data
mining step, a number of crucial training-data preparation steps need to be completed. Data
preparation, data selection, data cleaning, incorporation of additional prior knowledge and
proper interpretation of results of data mining are essential to ensure that useful knowledge
will be derived from the data. KDD is a highly iterative process, many of the tasks may be
performed in a different order, and it is often necessary to repeatedly backtrack to previous
tasks and repeat certain actions (Chapman, Clinton, Khobaza, Reinartz, and Wirth, 1999).

A prerequisite to starting a practical KDD procesdasa warehousingData warehous-
ing refers to a number of activities involved in collection and cleaning of data to make them
available for online analysis and decision support. The objective is to organize the available
data into a coherent database system and provide well-defined methods for efficient access

to the data. The software we created for this purpose is described in Appendix A. The re-
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mainder of this chapter describes the original data obtained from MCO, data warehousing

effort, and some of the data selection issues.

3.2 The Original Data

The data collection process was initiated at the Medical College of Ohio (MCO) in 1992.
Data were recorded first on paper worksheets then entered manually into an MS Excel
spreadsheet. Each row corresponds to a single patient visit — a SPECT procedure. About
184 parameters are recorded. Data include personal patient information such as age, sex,
height; information about the procedure, and the nuclear cardiologist’s interpretation of the
SPECT images (by regions of interest), and perfusion classification (i.e. diagnosis). For the
purpose of this work 4,828 records have been obtained from MCO over a period of time.
SPECT images are stored in a proprietary format, without database organization. Archiv-
ing of images has not been systematic due to significant storage requirements. Earliest
available SPECT images date back only to 1996. We have obtained 8,142 SPECT image
files from MCO. Typically there are six three-dimensional images and a number of auxil-
iary files per case. After cleaning, it corresponded to about 728 cases. Each set was stored
in a separate directory, the name of which was a combination of patient’s hospital number
and the date of study. Images and auxiliary data were stored in a proprietary binary format.
Descriptions of image files and their format was not provided. The following information

was typically contained in each directory:
e Patient identification number, name, and visit date.
e Row data for rest and stress study

e 3-D images corresponding to short, vertical long, and horizontal long axis views of

the heart; for rest and for stress study.

We determined the format of image files by reverse engineering. Image files were
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spread between different computer hard drives and archive media. Not all directories con-
tained complete data sets. Combined image data sets occupy currently over 3GB of disk
space. Due to cost and licensing issues software for manipulation and visualization of

SPECT images was not available; we wrote it from scratch.

3.3 Data Warehousing

The initial effort was data warehousing. Data contained in the spreadsheet have been con-
verted to a relational database. The proprietary SPECT image file format had been reverse-
engineered to the level that allowed the most critical information to be extracted - the ac-
tual three-dimensional images and patient identification information (hospital number and
SPECT date) stored in the header. Software for automatic indexing of images, using patient
identification information, was also created. Image indexes were stored in the database ta-
ble. Images were stored outside of the database within a predetermined directory structure.
The database design objective was simplicity of maintenance and ability to add easily new
patient records and images as they become available. Software for browsing patient records
with simultaneous display of available images in several modes was written. The database
also stores data generated by various data mining activities, such as information about gen-
erated models of a normal ventricle, and features extracted from the 3D SPECT images.
This way an SQL query can be directly used to generate variants of data sets needed for the

automation of diagnosis, e.g., learning Bayesian network classifiers.

3.4 Data Selection — Verification of the Data Quality

We have semi-manually inspected the original data to eliminate errors, e.g. typos. The
intention was not to modify the data unless the correction was straightforward. Rather,

where possible, we constructed SQL queries to filter undesired records.
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Table 3.1:Cases with complete sets of SPECT images and complete diagnosis data.

Male Female Total

No ART  with ART Total No ART with ART Total NoART  With ART Total

NL 23 19 42 36 36 72 59 55 114

IS 21 6 27 17 4 21 38 10 48
INF 41 4 45 18 4 22 59 8 67
IS-IN 52 2 54 9 2 11 61 4 65
EQ 3 0 3 1 0 1 4 0 4
REV 0 1 1 1 1 2 1 2 3
LvD 0 0 0 2 0 2 2 0 2

140 32 172 84 47 131 224 79 303
IS, IS-IN 1 0 1 0 0 0 1 0 1
IS, REV 2 1 3 1 0 1 3 1 4
IS, LVD 1 0 1 0 1 1 1 1 2
IS-IN, LVD 7 0 7 0 0 0 7 0 7
INF, 1S 11 0 11 1 0 1 12 0 12
INF, IS-IN 2 0 2 0 0 0 2 0 2
INF, REV 3 1 4 0 0 0 3 1 4
INF, LVD 10 0 10 2 0 2 12 0 12
INF.LVD,REV 1 0 1 0 0 0 1 0 1
LVD, REV 1 0 1 0 0 0 1 0 1
39 2 41 4 1 5 43 3 46

total 179 34 213 88 48 136 267 82 349

The numbers of records available were counted to estimate the statistical validity of
expected results; e.g., if a sufficient number of examples exists for each learning class.
Table 3.1 shows number of cases available in the latest version of the database for each
of the left ventricle perfusion classificationdL(— normal,IS — ischemia,INF — infarct,

IS-IN — ischemia and infarcgQ — equivocal REV — reversible redistributior,VD — left
ventricle dysfunctionART — artifact). The top of the table corresponds to records with a
single classification code, the bottom to records that contain more than one classification
code.

By matching image sets to database records some data errors have been found. Most
of these errors were resolved as typographical, but some of the images remained with-
out matching patient records. They were eliminated from the analysis. Next, image sets
were checked for completeness, e.g. stress study missing, and for quality of the individual

images, mostly related to sufficient contrast (photon count).



Chapter 4

Extraction of Features from Cardiac

SPECT Images

4.1 Cardiologist’s Interpretation Process

Each diagnostic patient study contains two, three-dimensional SPECT cardiac image sets
of the left ventricle (one for rest and one for stress study). Comparing the two image sets
allows the interpreting physician to decide on diagnoses, such as ischemia, infarct or arti-
fact. Evaluation of the images is a highly subjective process with potential for substantial
variability (Cuaron et al., 1980). To analyze the images, we followed a procedure orig-
inally described by in (Cios, Goodenday, Shah, and Serpen, 1996). The raw image data
taken from multiple planar views are processed by filtered back-projection to create a 3D
image. These three-dimensional images are displayed as three sets of two-dimensional im-
ages corresponding to tlshort axis view, horizontal long axis view, andvertical long
axis view.

From these two-dimensional views, the interpreting physician may select five slices to
represent the final report, see Fig. 4.1. From the short axis view, one slice is taken near

the heart’s apex, one at the mid-of the ventricle, and one near the heart's base. With this

17



18

Horizontal Long Axis Vertical Long Axis

Short Axis Basal
Short Axis Apical Short Axzis Mid

“ @«g% @«g;% 7
2wk,

Figure 4.1:Twenty two regions of interest within a left ventricle (22 ROIs). The first

three images correspond to a short axis view slices, the last two to horizontal

long axis view and vertical long axis view, respectively.

technique, for each of the horizontal and vertical axis views, a single slice is selected cor-
responding to the center of the LV cavity. Each of these five images is subdivided into a
number of regions of interest, from four to five, along the walls of the LV, for a total of

22 regions. The appearance of the LV and maximum count in each of the regions is eval-
uated. Corresponding region of interest (ROI) locations on the stress and rest images are
compared. Perfusion in each of the regions is classified into one of seven defect categories:
normal, reversible, partially reversible, defect defect showing reverse redistribution
equivocal or artifact. The physician’s impression of overall LV perfusion, or the final
SPECT image analysis result, is concluded from the results of analysis in each of the ROISs.
From the analysis, the interpreting physician categorizes a study as showing one or more of
eight possible conditionsaormal, ischemia infarct and ischemia, infarct, reverse re-
distribution , equivocal artifact, or LV dysfunction, see Fig. 4.2. Some of the perfusion
categories may coexist, for example normal and artifact, reverse redistribution and infarct,
etc.

The most fundamental operation performed by the interpreter during analysis of SPECT
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Diagnosis

Figure 4.2:0Overall classification of left ventricle perfusion based on partial classifica-

tions.

images is comparison of the case at hand to a mental image of a normal LV. The first task is
to establish the location of the ROIs within the current SPECT image. This process is com-
plicated by two factors that create a major challenge for any algorithmic implementation.

Both of these factors modify the apparent shape of the analyzed LV in the SPECT image.

They are defined bellow.

Actual LV detects Changes in perfusion of the LV are manifested as changes in the bright-
ness (radioactive counts) of the SPECT image. When perfusion is reduced, the counts
are low, and, in effect, parts of the LV may not even be apparent in the image due to
extremely poor perfusion. The interpreting physician deals with this loss of counts
by mentally “reconstructing” the missing contour of the image based on knowledge
of heart anatomy and previous experience with cardiac SPECT imaging. However,

this is a major challenge for computer algorithms.

Artifacts The most common artifact for Thallium 201 imaging is decreased count, usually
from attenuation by breast tissue in females, or by the diaphragm in males. Artifacts
may complicate localization of the 22 ROIs. Also, even after the analysis regions
are determined correctly, presence of artifact may lead to false diagnosis since the

decreased count may be erroneously taken for real perfusion defects.
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Once the predefined ROIs are established, differences between rest and stress images in
each location are analyzed, and counts within each region are compared to that of a normal
model. The overall impression of myocardial perfusion is directly concluded from the
results of this analysis from each of the regions.

In this work, a combination of computer vision and machine learning is used to mimic
the diagnostic process performed by an interpreting physician. Before a machine learning
algorithm can be used, a set of features needs to be extracted from the three-dimensional
images for each case study. The most natural approach is to extract a single feature corre-
sponding to each region of interest in both rest and stress images (see Fig. 4.1), as it was
originally done in (Cios et al., 1996). Each feature can be represented by a single number,
e.g., maximum count, mean count, median count, etc. Thus we have a set of 44 attributes
for each patient’s case that can be used to classify LV perfusion. Another approach is to
perform local classification first, in each of the 22 regions using information from rest and
stress images, and then use these 22 intermediate regional classifications to classify the
overall LV perfusion. Results for both of these approaches will be presented in Chapter 8.

It is difficult to automatically perform correct and repeatable determination of the ROIs
directly from the 3D images due to artifacts, actual LV defects, and anatomical differences
between patients. In order to do that, we use a model of a normal LV. Location of the
regions is a part of the model description. The model plays a role analogous to the in-
terpreter's mental image of a normal LV. The first step in the feature extraction process
is registration - matching the image at hand to the model using translation, rotation, and
scaling operations. The image may be matched with a number of models. The model with
highest correlation ratio is selected and used to locate slices and regions of interest in the
image. Regional perfusion is determined based on the count/intensity of LV walls within
the region. Even when the image and a model are correctly registered, the walls of the
model and case under investigation may not completely overlap, thus compromising qual-

ity of the feature extraction process. Correct determination of myocardium wall location is
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Figure 4.3:Three-dimensional rendering of a normal left ventricle model.

difficult. The approach we use, besides direct reference to the normal LV model, is similar
to the radial search as used in SPECT bull's-eye methods (Goris et al., 1987; Van Train
et al., 1994). The model is used to determine the center of the left ventricular cavity. A
search is performed in a desired direction, starting from the center of the cavity; the max-
imum intensity value along the search direction is recorded. This is based on the premise
that counts within the LV wall are higher than in surrounding areas.
Another critical issue is normalization of the image intensity range. Not only do counts

vary significantly between patients, they are also different between the rest and stress im-
ages for the same patient. There is no easy way to correct that. Typically, numerical values

are normalized as a percentage of the maximum count in a given three-dimensional image.



22

4.2 Model of a Normal Left Ventricle

There are a number of possible approaches to create a model of the left ventricle. Re-
cently, physics-based deformable models have been gaining in popularity (Declerck, Feld-
mar, Goris, and Betting, 1997). The premise is that they are well suited to deal with natural
anatomical differences, but their drawbacks are their relative complexity, and they are diffi-
cultto use in cases when there are large perfusion defects. Physical-based deformable mod-
els are particularly useful for tracking a motion of LV, for instance, in gated-pool SPECT
imaging. SPECT images used in this research are static. Thus, we decided to build a rigid
model of the left ventricle by “averaging” a set of images corresponding to cases diagnosed
by the interpreting physician as normal. We also decided to use, for models only, the images
that were evaluated by the most experienced physician. Images were additionally screened
for excess presence of noise and artifacts. Before averaging, the selected case images are
translated, rotated, and scaled to obtain the best match between them. A variant of best-
first heuristic was used to make correlation search computationally feasible. Once matched
to each other, case images were added, constitutirayaraged modelDue to anatom-

ical differences between patients, models for females and males were created separately.
The format of a model is the same as a three-dimensional SPECT image, so a cardiologist
can easily evaluate its quality. Each model was manually inspected, and the locations of
slices and regions of interest for this particular model were recorded. An example of three-
dimensional rendering of a male rest model is shown in Fig. 4.3. The rendering was created
using the Visualization Toolkit library (Schroeder, Martin, and Lorensen, 1998); the library

can be freely downloaded frohttp://www.kitware.com

4.3 3D Image Registration

To ensure repeatability and robustness of the feature extraction, we ideally require that the

object of interest on the analyzed images have the same spatial orientation and scale. In
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(a) Registration reference (b) Image to be registered

Figure 4.4:Sample 2D image registration problem. Images represent horizontal long
view of a left ventricle. Image (a) comes from a model of a normal LV;

image (b) from a patient with infarct.

image processing this operation is caltedistrationor image matchingAn example of a
2D image registration problem is presented in Fig. 4.4, 3D image registration problem in
Fig. 4.5. Image (a) represents a desired orientation and scale. Image (b) has to be translated,
rotated and scaled to match the object model in image (a).
Let I, denote the three-dimensional reference image — the image containing the model
object. Let/- denote the three-dimensional image that needs to be registergd toet
Ir = T(I¢) denote the imagé. after registration. The problem of image registration is
that of finding a transformatioft. Transformatiorl” when applied to imagé- matches
the considered object in that image, in our case the left ventricle, with the model object in
imagel,,.
In the approach presented here we search for the optimal registration transforimation
by maximizing thecross-correlation coefficient
HT) = Jow I (x) T[e(x)] dx
Vi B3 dx [y, T2Ie(x)] dx

wherex = [z, 7o, x3)7 is a three-dimensional pixel coordinaféx) is the gray level value

(4.1)

of pixel x in image/. W is the integration domain, typically is the whole volume of the
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(a) Registration reference (b) Object to be registered
Figure 4.5:Sample 3D image registration problem. Images represent isosurface render-
ing of 3D cardiac SPECT images. Image (a) comes from a model of a normal

LV; image (b) from a patient with a very well visible infarct.

reference imagé,,;. The cross-correlation coefficient is a useful similarity measure. It is
zero for totally dissimilar images and reaches maximum of one for identical images.
Since image coordinates are discrete, we use sums rather than integrals to calculate the

correlation coefficients:

o Sw e T s
D= S B S T lle) (@2

Alternative approaches to left ventricle registration, including these based on physics-

based deformable models, can be found in (Declerck et al., 1997) or (Qian, Mitsa, and

Hoffman, 1996) among others.

4.3.1 3D Image Transformation

Transformatiorf” used here for registration of images is a superposition of three component

transformations:

e translation’s,

e rotation7,,, and
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e scalingT,.
The superposition of these transformations can be expressed as follows:
TH =Ty ®Ta T[] =T [T [Ts [1]]] - (4.3)

Transformation', = T'[I¢] assigns new coordinates to each of the pixels in the original
image I new coordinates and maintains its intensity. The transformation is continuous.
The new coordinates, after transformation, are not discrete. Thus, the transformation is
practically computed backwards. We start with discrete coordinates in imiggesd cal-
culate what would be the original coordinates in the imé&ge Since the original image
contains only pixels at discrete coordinates a tri-linear interpolation is performed to find
the estimation of the intensity in the imagg.

In the following four sections, we first describe calculation of each of the component
transformationdy, 7., andT, followed by the description of the tri-linear interpolation.

We will usex™ to denote coordinates of a point before a particular transformation, and

x(?) to denote coordinates of the same point after transformation.

Translation

Translation transformatiof; is described by three parameters: [t,, ¢, t3]7 wheret; is

a translation along coordinate axis Translation is defined by the following formula:
Ty [1 (xM)] = 1 (x?) = 1 (x" +1) (4.4)
Thus

xM = x® g, (4.5)

Rotation

Rotation transformatiofl, is described by three angular parameters= [ay, as, az]”

whereq; is a rotation around line parallel to the axis and a center of rotatiox(”). Rota-
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Figure 4.6:Rotation in 2D.

tion T, can be represented by a three simpler rotations performed for each axis separately:
Ta[[] = (Ta1 ® T, ® Tas)[]]' (4.6)

Each of the component rotatioff§, can be seen as a two-dimensional transformation in a

plane perpendicular to axis.

Rotation in 2D Let o be a rotation angle. Let poirit:®, ) be a center of rotation.
Let (2™, ")) denote a point coordinates before rotation(1ét), y(>)) denote coordinates
of the same point after rotation, (see Figure 4.6). Coordinates of the lpefiorierotation

can be calculated using the following formulas:

= @@ — 20) 4 (5 — yO)?

p = arctan%
e 4.7)
e = rcos(p — )

yV = rsin(p — a)

Rotation in 3D Formulas used to compute component rotations in 3D are a straight-
forward extension of the formulas presented in Eq. (4.7). They are presented here for a

convenient reference.
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Coordinates of the original point for the rotati@p, :

1

2
\/<x§0) — xé”) + (:Ego) —x

71 cos(p1 — aq)

r1sin(p; — aq)

Coordinates of the original point for the rotati@p,:

L)

(2)) 2
3

2
(o)’ (o~

2 _ x(O)
arctan ﬁ
T3 — T3

o 8in(pa — ag)

o

9 cos(py — (i)

Coordinates of the original point for the rotati@j,:

rs

Scaling

e

arctan

xgz) B a:éo)

x?) — xgo)
T3 COS(<P3 - 043)

r3sin(ps — ag)

o

2
— m§0)> + (xém —

(4.8)

)
(4.9)

)’
(4.10)

We decided to use isotropic scaling; thus, the scaling transformatisdescribed by a

parametek and the center of scaling®), that is the same as the center of rotation.

T xY)] = 1(x?) =

I (s (xV - x©) +x0)

(4.11)
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Thus

xO = X TX 7 0 (4.12)

4.3.2 Tri-linear Interpolation

The material presented in this section is an extension of a two-dimensional bi-linear inter-
polation presented in (Press, Teukolsky, Vetterling, and Flannery, 1992) to three-dimensions.
We call it a tri-linear interpolation.

In three dimensions, we imagine that we are given a matrix of image intensity values
Ia[l..m|[1..n][1..p]. We are also given arraysla[l..m|, x2a[1..n], x3a[1..p] that describe
coordinates of pixels in the imagein each of the axis:;, x2, andzs, respectively. The

relation of these inputs and the underlying imdde , 2, z3) is
Ia[i][j][k] = I (x1la[i],x2a[j],x2a[k]) (4.13)

We want to estimate, by interpolation, the gray level of image some untabulated point
(1, o, T3).
An important concept is that of thgrid cubein which the point(z,, zo, z3) falls, that
is, the eight tabulated points that surround the desired interior point. For convenience, we

will number these points from 1 to 8. More precisely, if inequalities

IN

xlali] < 27 < xlali+1]

IN

x2alj] < zy < x2alj +1] (4.14)

x3alk] < x5 < x3alk + 1]
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definei, j andk, then

Iy = yali][j][k]
I = yali +1][j][]
Iy = yali+ 1][j + 1][K]
Iy = yali][j + 1][] (4.15)
I5 = yali][j + 1]k + 1]
Iy = yali+ 1][j][k + 1]
I; = ya[i+1][j + 1]k + 1]
Is = yali][j + 1]k + 1]
The tri-linear interpolation on the grid cube is formulated as follows:
t = (1 —x1ali])/(x1a[i + 1] — x1ali])
u = (zo —x2a[j])/(x2a[j + 1] — x2al[j]) (4.16)
v = (v3 —x3alk])/(x3alk + 1] — x3alk])
so thatt, v, andv each lie between 0 and 1, and
I, a0,03) = (1—1)-(1—w)-(1—0v)-I + t-(1—u)-(1—v) I
ftou-(1=0)- I+ (1=t)-u-(1—0) I w1

+ (1—-t)-1—u)-v-Isy +t-(1—u)-v-Ig
+tu-v-Ir + (1—t)-u-v-Is
4.3.3 Computation of Image Registration Transformation

Computation of the cross-correlation coefficient for three-dimensional images is a com-
putationally intensive process. As presented above, the three-dimensional registration has

seven degrees of freedom:

e translation in three dimensiong;, t,, andts;
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e three rotation anglesiy, as, as;
¢ and a scaling factot.

To make the registration of cardiac SPECT images based on cross-correlation coefficient
practical we first estimate the registration transformation and then refine the transformation
parameters by performingkeest-firstheuristic search with decay in the seven-dimensional
parameter space. The parameter decay was added to dump oscillations we had experienced

when first testing the best-first search.

Estimation of the Image Registration Transform

We estimate two components of the registration transform: translatiamd scalingd’’;.
The estimation is based on detecting a three-dimensional blob representing the left ventricle
walls in the model and the target image. A SPECT image is first thresholded at 55% of
the maximum intensity of that image to create a binary image. Next, a three-dimensional
connected component labeling algorithsmapplied to the binary image to label all blobs in
the image. The largest blob near the center of the image is considered to be the left ventricle.
The thresholding level has been experimentally set at its value of 55% to guarantee that it
is practically always the case.

Let B denote a set of pixels constituting a blob. We will assumesthat’s means that a
pixel with coordinatex is a member of the bloB. We can also writd8 = {x™), ... x™},
wheren is the number of pixels in the blob.

We define acenterof a blob5, denoted bk as an average of blob points’ coordinates:

1 e—
f:_E: i) 4.18
b ni:IX ( )

lwe generalized the connected component labeling algorithm to three-dimensions. The main difference
from the two-dimensional version was how the pixels are selected dumr@wBVIERGE phase. This is

illustrated in Fig. 4.7.
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Figure 4.7:Connected component labeling in 3D. Search feo®/MERGE candidates

in the case of 4-neighborhoods.

This definition was giving us better results in estimating translation transforniAtitran
other approaches including defining the blob’s center as a center of gravity.

Letx,, be a center of the bloB,, representing left ventricle in the reference imdge
and letx be a center of the bloB representing left ventricle in the target imaye We

estimate the translation transformatifnas distance between centers of blftas andB.:
t = Xy — Xc (4.19)

In order to estimate the scaling transfofiy we introduce a notion that we call a scale
factor. Ascale factorof a blob3, denoted by is a median distance of pixels belonging
to the blob from the blob’s center. Let&,, be a scale factor of the bldb,,;, and¢- be a

scale factor of the bloB.. Then, we can estimate the scaling transfa@inas follows

§um
== 4.20
e (4.20)

As with the definition of blob’s center, the approach to estimate the scaling transform based

on the scaling factor consistently give better scale estimates than other approaches we
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Algorithm 4.1 Cardiac SPECT image registration estimation.

for the reference imagg, and the target imagé. do
Threshold the image at 55% of the maximum gray level value
In the binarized image find the largest biBlvepresenting the left ventricle wall
Calculatex — center of the blob
Calculate — size factor the blob
Estimate translation transformatidp t = x,; — X¢
Estimate scaling transformatidh; s = &«

13e]
return registration transforation estimate= 7; & 7.

© N o g B~ w b PP

tested.

The algorithm of registration transformation estimation is summarized in Alg. 4.1.

Registration Refinement: Best-First Search with Parameter Decay

The initial estimate of the registration transformatifrgiven by Alg. 4.1 is refined by
performing an optimization/search that maximizes the correlation coeffici{ghtgiven
by Eq. (4.2). The search is performed as a series of local neighborhood searches. We start

by defining asearch step\
A - [Atla Atza At3; Aoq ) Aa27 Aocga AS]T

A search neighborhooi defined by a search cent&f”), and the maximum number of
stepsy that can be taken from the center. The search neighborhood cons{gts-pf1)”
points. Fory = 1 itis 3" = 2187 points, fory = 2 it consists of5” = 78125 points, and so

on. Typicallyy = 1 is a good enough tradeoff between accuracy and computational com-
plexity. The transformatiofi” in the search neighborhood that has the highest correlation
coefficientr(7") becomes the center of the next search neighborhood. The local search is

repeated as long as the change in the correlation coeffitientr(1") — »(T*))| is greater
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Algorithm 4.2 Registration refinement: best-first search with parameter decay

1. i < 0 {iteration numbe}
2. 0 « oo {change in the correlation-coefficient
3.  Estimate the registration transformatibrusing Alg. 4.1
4. TO — T {search neighborhood center
5. whilei <iyax andéd > oy do
6. Find best new transformatidff within maximum step range - A from 7
7. if 7(T") > r(T)thenT — T"  {remember the best transformation sofar
8. § — |r(T") — r(T)]
9. TO T’
10. A — - A {reduce search step in next iteration by the decay fagtor
11. 1—1+1
12. return 7.

than the limit value),,,.,, or until the maximum number of iterations has been reached.
During initial tests, we noticed that the best-first search described in the previous para-
graph has a tendency to get into a sustained oscillation cycle two or more iterations long.
To get rid of this phenomenon we introduced a decay factbat decreases the search step
in each iteration. This helps to dampen the oscillations whenever they occur.
The final algorithm of registration transformation refinement, including parameter dump-

ing, is summarized in Alg. 4.2.

Image Registration Database

The calculation of the registration transformations for each of the images for over 350
cases (with diagnosis) in the SPECT database was quite time consuming. However this
calculation needed to be performed only once. We have added to the SPECT database a

table containing the registration transformation parameters and the corresponding value of
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the cross-correlation coefficient for each image and a model of normal left ventricle.

4.4 Extraction of Features from Registered Images

Feature extraction consists of two phases. First, objects of interest in the image are de-
tected. Next, for each of the objects, or their parts, some features of interest are calculated.
For SPECT images, the objects of interests are walls of the left ventricle. Following the
approach described Section 4.1, we are interested in parts of left ventricular walls cor-
responding to twenty-two regions of interest presented in Fig. 4.1. We understand these
twenty-two regions as 3D parts of the left ventricular walls. Once we are able to locate a
region within a 3D SPEC image, a set of features is calculated for each of them separately.

We can define a feature, for instance, as a median pixel intensity within a region.

4.4.1 Detection of Objects in SPECT Images

We have considered a number of approaches for detection of left ventricle walls. One
of these approaches has been presented in Section 4.3.3 — an image is thresholded, and
objects are detected by connected-components labeling. This approach is computationally
efficient and sufficient for the purpose of registration transformation estimation, but not
robust enough for detection of left ventricle walls. It only gives a coarse estimate of their
location; a single threshold value is not sufficient.

An approach based on spherical radial gradient search has been proposed by Declerck
et al. (1997). The difficulty with this approach is that the SPECT images typically are of
low contrast and transitions between pixels in infarcted or ischemic left ventricle wall are
small, making gradient detection methods impractical. This is especially true for Thallium-
201 SPECT images used in this research.

A method specifically designed for detection of free-shape objects on low contrast im-

ages has been presented in (Sacha et al., 1996). This method performs object detection
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using region growing approach. We have initially used it for detection of the left ventricle
walls, but have encountered problems related to low resolution of SPECT images (small
pixel size of objects).

The method that proved most robust in our experiments is based on spherical radial
search presented by Goris et al. (1987). We eventually used a variant of this method that
performs search in cylindrical coordinates since it is closer to the cardiologist’s interpreta-

tion process presented in Section 4.1.

Spherical Radial Search

Goris et al. (1987) presented a modified methodudfs-eyeimages creation that uses only
spherical search. A typical bull's-eye method uses a combination of cylindrical and spher-
ical radial search; spherical search is performed in the apex area, cylindrical search in the
mid and basal section of the left ventricle. The method presented by Goris et al. (1987) uses
only spherical radial search with a center positioned near the base of left ventricle. In what
follows, we will refer to this method aSBB (from name of the authors Goris, Boudier, and
Briandet). While describing the GBB method, we will point where our implementation of

the spherical search differs.

Background subtraction The initial step in the GBB method is background subtraction.

It is done at a fixed level of 33% of the maximum pixel value in the three-dimensional
image. Beside a typical maximum search along a radius, the authors also compute integral
along the radius. The main reason for the background subtraction is, in our opinion, to

improve repeatability of the integration results.

Reorientation and center selection In the GBB method, the LV image is manually re-
oriented to normalize its position. A center of radial search is selected manually, by the
operator before the search is performed. In our approach, a model of a normal left ventricle

is utilized for reorientation (registration) and automatic selection of the radial search center.



Figure 4.8:Spherical coordinates system.

Radial search The spherical system of coordinates is presented in Fig.>4%.is the

center of the spherical coordinates (the same as the center of the radial search). Coordinates
of a pointx are represented by a triplé, ¢, p), wheref is an angle between vectér=

x — x(© and axisz;, ¢ is an angle between vectérand axisz;, andp is the length of

vectorr.

)4 p sin(y) sin(0)

T = a;§°
Ty = xg)) + p sin(p) cos(0) (4.21)
r3 = xéo) + p cos(p)
The search is performed along the veatdor p ranging from 0 to some maximum value
Pmaz- ANGle 6 is changed in the full range foref to 360°, and anglep from —135° to
+135°.
Two mappings are created during the searthxx (¢, 0) and I7or(p,0). The MAX

mapping contains the maximum value found along vegttar fixed ¢ andf. TheTOT
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Rest Stress
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Figure 4.9:Bull's-eye images created by spherical unwrapping of the left ventricle.

mapping contains the integral of values found along ve€tor fixed © andé.

Inax(p,0) = emax ]1(90,9,/))
pmaz (4.22)

Pmax
Iror(p,0) = / I(,0,p) dp
0
To make the visualization of the radial search results more intuitive, maphings(¢, 0)

andIror(p, 0) are transformed tor;, x5) coordinates forming two round images.

x1 = pcos(f) +x§°)

(4.23)

Ty = @sin(f) + 2

In the Iy ax(x1, 22) and Izor(x1, 22) the center of an image represents the apex of the
left ventricle, edges of an image are near the base of the left ventricle. An example of
Injax(z1, z0) andIror (21, x9) for REST and STRESS SPECT images created during our

experiments is presented in Fig. 4.9.

Cylindrical Radial Search

Cylindrical radial search, or cylindrical unwrapping, is similar to the spherical radial search

except it is performed in the cylindrical coordinate system, see Fig. 4.10. The following
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Figure 4.10:Cylindrical coordinate system.

formulas define transformation from cylindrical to cartesian coordinates.

Ty = xgo) + p sin(0)
Ty = xéo) + p sin(0) (4.24)

Ty = xéo) +z

TheMAX andTOT mappings are calculated in a fashion similar to the spherical search.

Inax(z,0) =  max I(z,0,p)

pE [mea:c]

Pmax (4'25)
Iror(z,0) = / I(z,0,p) dp
0
We do not convert these mappingsiq, z,) coordinates, as itis done in bull's eye methods
(Van Train et al., 1994). We use them directly for the feature extraction since conversion

introduces additional interpolation errors.

4.4.2 Radial Search and Location of 22 3D ROls

Radial search transforms 3D SPECT images creating 2D maps. The objective is to remove
irrelevant information from 3D images and present the relevant information in a simpler

2D form.
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Short Axis Views

The cylindrical search is well suited for detection of left ventricle walls in the short axis
views (Fig. 4.1). The walls in these views are roughly cylindrical in shape. We can interpret
each of the short axis ROIs, in 3D images, as a wedge. These wedges can be one or more
slices in thickness. Fig 4.11 (a) and (b) shows our selection of angles that define the wedges
in 3D images. The map created by the spherical radial search is a rectangularigpage,

or Iror. Each of the wedges corresponds to a rectangular area in that image, as shown in
Fig 4.11 (c). A single image contains data for the apical, mid, and basal views. Angle

is changing in the full range &f60° starting at—135° and finishing a225°. The center of

search and range ferandp depends on the model of the normal left ventricle used. Center

of search is located at the center of the left ventricular cavitypically spans nine slices,

three for each of the views.

Long Axis Views

We also use radial spherical search for detection of left ventricle walls in long axis views.
The left ventricle walls are roughly cylindrical in shape in these views, as shown in Fig. 4.12
and 4.13. Cylindrical search maps are created separately for the horizontal long and hor-
izontal short axis views. Angle®defining the ROIs and location of the center of search
for the horizontal long axis are presented in Fig. 4.82anges from—235° to 80°. An-
glesd defining the ROIs and location of the center of search for the vertical long axis are
presented in Fig. 4.13.ranges from-160° to 160°.

Note that we follow the common convention in image processing where pixels coordi-

nates increase from top to bottom and from left to right.



40
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(a) Definitions of ROIs superimposed on male models of normal left ventricle.

%
ANT LAT INF SEPT APICAL
ANT ANT_LAT INF_LAT INF ANT_SEPT MID
ANT ANT_LAT INF_LAT INF ANT_SEPT | BASAL

(b) ROIs in the cylindrically unwrapped image are the samd fpx x andIror.

Figure 4.11:Regions of interest for cylindrical radial search — short axis views.
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(a) Definitions of ROIs superimposed on models of normal left ventricle.
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(b) ROIs in the cylindrically unwrapped image are the samd fpf x andIror.

Figure 4.12:Regions of interest for cylindrical radial search — horizontal long axis view.

4.4.3 Feature Extraction from Radial Search Maps

We use the radial search mapsx and Iror created for 3D rest and stress study for

feature extraction. Each of the maps is partitioned into regions corresponding to 22 ROIs,

as described in the previous section. For each partition, we calculate the maximum, mean,

median, and standard deviation of pixel values in that partition. This way we have 16

features extracted in each ROI. Features, after extraction, have been stored in dedicated

tables in the SPECT database. Feature records also contain information about normal left



42

Male

Female

(a) Definitions of ROIs superimposed on models of normal left ventricle.

ANT APICAL INF BASAL

(b) ROIs in the cylindrically unwrapped image are the samd fpx x andlror.

Figure 4.13:Regions of interest for cylindrical radial search — vertical long axis view.

ventricle models used for image registration, registration transformation, and parameters
used for creation of ,, , x and Iror images. We use this information to prepare data for

perfusion classification experiments described in Chapter 8.



Chapter 5

Bayesian Networks

Almost any practical artificial intelligence application requires dealing with uncertainty.
Diagnosis of the left ventricle perfusion is a very good example. The input data, cardiac
SPECT images, are intrinsically noisy. The noise is due to technical limitation (low reso-
lution of the detector cameras, quality of the 3D reconstruction algorithms), safety consid-
erations (dosage of the radioactive trace that a patient is injected with cannot be arbitrarily
large resulting in reduced image signal-to-noise ratio), and anatomical differences between
patients (organ size and shape, distribution of the radioactive trace after injection, artifacts
due to an organ diffusing or absorbing diagnostic photons). Our output data, physician’s
diagnosis, is to a large extent subjective and difficult to quantify.

Until recently, application of a strict mathematical approach to reasoning under uncer-
tainty was considered impractical. This was mostly due to the problem of computing the
joint probability distribution of large number of random variables involved in reasoning.
The last decade has seen significant theoretical advances and increasing intgegstiin
cal models A graphical model is a way of representing dependency relationships within a
set of random variables. Random variables are represented by nodes in a graph. An arc in
the graph intuitively corresponds to a dependency relationship between two variables. The

lack of an arc can be intuitively interpreted as a lack of dependency between two variables,

43
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(@) Fully connected graphical (b) Graphical model demon-
model. Each variable depends on strating limited dependency
every other one. among random variables.

Figure 5.1:Examples of graphs representing graphical models.

see Fig. 5.1. This intuitive graphical interpretation of dependencies between variables is
one of the reasons for popularity of graphical models. Other reasons for their popularity
are the significant progress in theory and algorithms for inference, and advances in learn-
ing structure and parameters of graphical models (Jordan, 1998). Most importantly, there is
a considerable number of successfully tested applications of graphical models (Haddawy,
1999).

One of the most popular types of graphical modelsBagesian networksThe main
characteristic differentiating them from other graphical models is that arcs in the network
are directed, representing conditional dependence among variables. The name comes from
the fact that most theory relevant to Bayesian networks is bases on Bayesian probability.
The remaining material in this section presents overview of topics relevant to the use and

learning of Bayesian networks.
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5.1 Basic Concepts

Notation Random variables are denoted by capital letters, eXg. Values of these
variables are denoted by small letters, Bold letters denote sets of variableX, =

{X1,...,X,}, orvariable values = {z,,...,z,}. £ denotes background knowledge.

Bayes theorem The conditional probability of a random variakiegiven a random vari-

ableb can be calculated as follows:

plalb) = (5.1)

Chainrule Joint probability ofx can be expressed as a product of conditional probabili-
ties:

n

p(x) = [ pxilz1,. .., 2io) (5.2)

i=1

Bayesian Network A Bayesian network for a set of random varial¥es- { X,..., X,,}
isapairB = (S, P), whereS is a directed acyclic graph (DAG) whose nodes are in one-to-
one correspondence with random variableXinP is a set of local probability distributions
associated with each variabl&.; denotes both the variable and its corresponding node in

S. We usePa; to denote parents, angh, to denote configuration of parents of nadein

S as well as variables corresponding to these parents. The joint probability represented by

the structures is given by:

n

p(x) = [ [ p(ilpa;) (5.3)

=1
The local probability distributiong® are the distributions corresponding to the terms in
Eq. (5.3). An example of a Bayesian network is presented in Fig.5.2. The probability

distribution represented by this network is:

(a1, o, T3, T4, T5) = p(T1|T2, T5) - p(x2) - p(as|as) - p(xal|zs, x5) - p(s). (5.4)
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Figure 5.2:Example of a Bayesian network graph.

5.2 Inference

Because a Bayesian network f¥r determines a joint probability distribution foY, we
can — in principle — use the Bayesian network to compute any probability of interest. For
instance:
L1y, Ty
p(z1|Ta, ... 2n) = P ) (5.5)
/p(xl, ey Ty )day

For problems with many variables this direct approach is not practical. Some more

efficient methods of exact and approximate inference in Bayesian networks have been es-
tablished. The following algorithms for exact inference in networks with discrete variables

exist:

e A Bayesian network is first transformed into a tree where each node corresponds to a
subset of variables iX. The algorithm then exploits mathematical properties of this
tree to perform probabilistic inference. (Lauritzen and Spiegelhalter, 1988; Jensen,
Lauritzen, and Olesen, 1990; Dawid, 1992). A good discussion of practical issues
involved in its implementation is presented in (Huang and Darwiche, 1994). This is

the most commonly used algorithm.

e The arcs in the network structure are being reverced until the answer to the given

probabilistic query can be read directly from the graph. Each arc reversal corresponds
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to an application of the Bayes’ theorem (Howard and Matheson, 1983; Omstead,

1983; Shachter, 1988).

e A message passing scheme that updates the probability distributions for each node
in a Bayesian network in response to observations of one or more variables (Pearl,

1986).
e Symbolic simplification of sums and products (D’Ambrosio, 1991).

Exact inference in networks with continuous distributions have been studied by Shachter
and Kenley (1989) for multivariate-Gaussian distributions, and Lauritzen (1992) for Gaussian-
mixture distributions.

Exact inference in Bayesian networks is NP-hat@ooper, 1990; Heckerman, 1996).
The problem is due to undirected cycles that may be present in a Bayesian network. Ap-
proximate inference in Bayesian networks is a topic of current research. Existing ap-
proaches include: pruning the model and performing exact inference on the reduced model
(Kjeerulff, 1993), cutting loops and bounding the incurred error (Draper and Hanks, 1994),
variational methods to bound the node probabilities in sigmoidal belief networks (Jaakkola,

1997; Jordan, Ghahramani, Jaakkola, and Saul, 1998).

INP-hard meansion-polynomiahard. Generally, algorithms are considered tractable when the time

needed to execute the algorithm is a polynomial of the number of parameters, e.g., number of nodes in the
network (Even, 1979). In particular, this function can be linear in the number of parameters. When there are
no algorithms to solve a given problem so that the time needed to execute that algorithm grows no faster then
according to some polynomial function of parameters, the problem is called NP-hard. For instance, a problem
for which the most efficient algorithm has the execution time exponential with the number of parameters is

NP-hard.
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5.3 Learning Parameters

In this section, we assume that the structure of a Bayesian network is known (learning of
the network structure will be described in the next section), all data is complete, and there
are no hidden variables. L&t denote the hypothesis that the joint probabilitydXofcan

be factored according to structuse Let0s = {6,,...,0,} be a set wherg, is the vector

of parameters for the local distribution functiptw;|pa;, 6;, S*) 2. Now we can write the

joint probability distribution as

n

p(x(0s,5") = [ [ p(wilpay, 6, ") (5.6)

=1
The problem of learning parameters in a Bayesian network is that of computing the poste-
rior distributionp(05|D, S™).

Assume that parametefisare mutually independent, then

n

p(Bs]5™) = [ [ p(6:15™) (5.7)

=1
Under assumption of complete data and parameter independence, the parameters remain

independent given the random sample:

n

p(0s|D, ") =[] p(6: D, S") (5.8)

i=1
In other words, each of the parametérsan be computed independently of others.

Learning parameters from complete data is discussed in (Spiegelhalter and Lauritzen,
1990). A more recent discussion can be found in (Buntine, 1994). Computation of param-
etersd; is most convenient for distributions in the exponential family and conjugate priors.
Heckerman (1996) discusses parameters for unrestricted multinomial distribution, details
of their computation will be presented in Section 7.3. Calculations for linear regression

with Gaussian noise are in (Buntine, 1994; Heckerman and Geiger, 1995).

2Local distribution functiorp(z;|pa;, 6;, S") is a probabilistic classification or regression function. A
Bayesian network can be viewed as a collection of probabilistic classification/regression models (Heckerman,

1996).
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5.4 Learning Structure

5.4.1 Strict Bayesian Approach

Let us assume that data is complete and there are no hidden nodes; define a discrete variable
representing possible hypothesis about network struétuesd assign probabilitieg S™).

The task of learning the network structure using Bayesian approach is that of computing
the posterior distributiop(S"| D). In principle p(S*|D) can be computed using Bayes

theorem:

p(S")p(D|S")
p(D)

Parameters of the network are learned as described above by computing posterior distribu-

p(S"|D) = (5.9)

tion p(8s|D, S™).
When we assume that hypothes#sare mutually exclusive we can compute the joint

probability distribution of the unobserved casg, ; given training seD as follows:
ploxalD) = Y p(S"1D) [ plxsal6s. S"p(6s|D.S)dbs  (6.10)
Sh

Although mathematically correct, the full Bayesian approach is not practical. The prob-
lem is with summations like the one ovéf in Eq. (5.10). The number of possible struc-
tures increases more than exponentially with the number of variables (network Aodes).

In practice, the sum in Eq. (5.10) is approximated in some manner. Typically this ap-
proximation is done using only a single model. This model is selected, as representative,
from among all of the possible models based on the assumption that posterior distribution
p(S"| D) has a single narrow peak for that selected model. There are two approaches to
model selection. In the first, designated hersearch & scoringsome criterion is used to

measure the degree to which a network structure fits the prior knowledge and data; a search

3This number can be determined for a given number of nadesing a function published by (Robinson,
1977). Even for a number of nodes as small as 10, the number of possible nodes is approihaté*

(Krause, 1998).
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method is used to find a model that best fits the data. In the second approach, designated
here aslependency analysithe dependency relationships are measured locally using some
kind of conditional independence test, such asithiest or a mutual information test. Gen-
erally, the first category of model selection algorithms has less time complexity in the worst
case (when the underlying DAG is densely connected), but it may not find the best solution
due to its heuristic nature. The second category of algorithms is usually asymptotically cor-
rect when the probability distribution of data satisfies certain assumptions, but conditional
independence tests with large condition-sets may be unreliable unless the volume of the
data is enormous (Cheng, Bell, and Liu, 1997b; Cooper and Herskovits, 1992).

Some researches approximate the sum in Eq. (5.10) by more then a single model us-
ing the selective model averagingA manageable number of “good” models is selected
and pretended that these models are exhaustive. This approach is much more complex
than the model selection. It is advantageous to identify network structures that are signifi-
cantly different, so that they will represent the whole distribution of models (Krause, 1998).
The difficulty is in finding theseliverserepresentatives of networks structures. Selective
model averaging is discussed in (Buntine, 1991b; Heckerman, Geiger, and Chickering,
1995; Madigan and Raftery, 1994). In the following we will concentrate on the model
selection methods.

A number of techniques for learning is presented in (Buntine, 1994). More recently
Jordan collected a number of articles related to learning Bayesian networks and graphical

models in general (Jordan, 1998).

5.4.2 Model Selection by Search & Scoring Approach

This section presents some examples of quality measures used for scoring network struc-
tures, and algorithms that can be used to search through the space of possible network

structures.



51

Bayesian Quality Measures

Bayesian quality measures rely on Bayesian statistics: Bayes’ theorem and conjugacy in
particular.* The basic idea of the Bayesian quality measures is to assign to every network a
quality value that is function of the posterior probability distributig,,| D). A frequently

used criterion is the log of the posterior probability:
log p(S"|D, &) = logp(S"[€) +log p(D| S, €) (5.11)

The logarithm is used for the numerical convenience. This criterion has two components:
the log prior and the log marginal likelihood. An equivalent criterion often used is:

pS"ID.ON (PO, (p(DIS"€)
8 (p(SMD,o) s (p<sg|g>> +log (p( DISh. g)) (5.12)

The ratio;%ggjg is known asBayes’ factor S is some selected reference hypothesis.

The Bayesian score was originally discussed in (Cooper and Herskovits, 1992) and
further developed in (Buntine, 1991b; Heckerman et al., 1995). Two, alternative Bayesian
guality measures, derived using two different sets of assumptions, will be discussed in

Section 7.5.

Minimum Length Encoding Measures

This concept comes froitiheory of codingwhere a string is encoded with as few bits as
possible. The score is based on the Minimal Description Length principle of Rissanen

(1989); the application of this principle to Bayesian networks was developed by several

4Unless the prior family of distributions is carefully selected, the resulting posterior probabilities may
not belong to the same families and mathematical treatment gets considerably complicated. If the prior and
posterior distributions are in the family of distributions for a given sampling process, we say that they are
natural conjugateo the given sampling process. That is, if a sample is used to update a prior probability
distribution in a conjugate family, the resulting posterior distribution will also belong to the same family. The
benefits of conjugacy include mathematical tractability; we obtain closed formulas for important quantities

used in Bayesian inference and learning.



52

authors (Bouckaert, 1994; Lam and Bacchus, 1994; Suzuki, 1993). Proponents of MDL
measure argue that using only the posterior probahility/*| D) (Bayesian quality mea-

sure) results is a criterion that prefers networks with complete graphs, thus a factor penal-
izing for the size of the network is added to the criterion. However, the use of the MDL
score for construction of Bayesian networks has been criticized by Friedman et al. (1997).
These authors argue, with support of a theoretical and an empirical study, that the use of
MDL may result in networks with a limited number of conditional dependencies leading to

a poor approximation of the joint or marginal probability distributions.

Information Theoretic Measures

Another way of measuring the quality of a network is by the information measures. These
measures can be seen as a generalization of the MDL measures. The most well know

measures are:

MLIC Maximum likelihood information criterianThe measure is the log likelihood of a
Bayesian network given the training data. Unlike other information theoretic mea-
sures, it does not contain a penalty for the size of the network. It is equivalent to

Bayesian quality measures.
q(B,D) = LL(B|D)
AIC Akaike information criterior{Akaike, 1974). This measure is not consistent: in the

large sample limit, the true model may not be among these receiving maximal scores

(Schwarz, 1978).

(B, D) = LL(B|D) — || B||

BIC Bayesian information criterioalso known aschwarz information criterio(fSchwarz,
1978; Heckerman, 1996). BIC is easy to use and does not require evaluation of prior

distributions. Consequently, it can be a practical criterion to use in the appropriate
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circumstances (Kass and Raftery, 1995). BIC approximates posterior probabilities
in large samples (Glymour, Madigan, Pregibon, and Smyth, 1997). When applied to
networks with unrestricted multinomial distributions of variables and Dirichlet priors
on parameters, BIC leads to the same criterion as MDL — differing only by a minus
sign.

logN
2

(B, D) = LL(B|D) — 1B]]

Model Search

K2 Algorithm  Cooper and Herskovits (1992) describe the use of a greedy search algo-
rithm, K2, for identifying the most probable structure given some of the test data. The
algorithm assumes that ordering of nodes is given. It starts with an empty network and iter-
ates through each of;, according to their ordering. For eadh it considers all nodes that
could be added to the existing set of parent ngates The candidate node that maximizes
the local scoring functiop; is selected. If addition of this node to the current set of parents
of X; increases the local scoring function, it is addectq and the search for the next
parent ofX; continues. If the addition of that node does not increase the scoring function,
it is assumed that all parents &f are found and the algorithm starts to search for parents
of X;,1. Pseudocode for the K2 algorithm is shown in Alg. 5.1 (Castillo, &z, and
Hadi, 1997).

Buntine’s Algorithm  An algorithm that does not require node ordering has been pro-
posed by Buntine (1991b). It starts with an empty parents set. At each step a new link is
added that does not lead to a cycle and maximizes the quality increment. The process is
repeated until no more increase of the quality is possible or a complete network is attained.

Pseudocode for this algorithm is presented in Fig. 5.2 (Castillo et al., 1997).
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Algorithm 5.1 K2 algorithm of Bayesian network construction.

{Initialization Steg

=

for i — 1 ton do

N

pa;, «— <

{Iteration Step

for i1 to n do
repeat
SelectY € ({Xi,...,X;1} \ pa;) that maximizesg = ¢; (pa, U{Y})
0 — (9 — ai(pa;))
if 6 >0 then
pa; — (pa; U{Y})
until (6 <0) or (pa, ={X1,...,X; 1})

© © N o 0 b~

CB Algorithm  Singh and Voltara (1995) proposed an extension to K2 algorithm they
called CB. The CB algorithm uses conditional independence tests to generate a “good”
node ordering from the data, and then uses K2 algorithm to generate the Bayesian network
from set of training sample® using this node ordering. Starting with a complete, undi-
rected graph on all variables, the CB algorithm first deletes the edges between adjacent
nodes that are unconditionally independent (conditional independence test of order 0). CB
orients the edges in the resulting graph and obtains a total ordering on the variables. It
passes this ordering to the K2 algorithm to construct the corresponding network. The al-
gorithm then repeats this process by removing edges (from the undirected graph obtained
in the previous iteration) between adjacent edges that are conditionally independent given
one node (conditional independence test of order 1). CB keeps constructing the network
increasing the order of conditional independence tests as long as the predictive accuracy of

the resultant network keeps increasing.



55

Algorithm 5.2 BUNTINE’ s algorithm of Bayesian network construction.

10.
11.
12.
13.
14.
15.
16.
17.

{Initialization Steg

N o g M W DdPRE

for i — 1tondo
pa;, «— I
for (i — 1ton)and (j «— 1ton)do
if 7+ # j then
Ali, j] — (mi(X — j) —m(2))
else

Ali,j] + —occ  {Prevent edgeX; — X;}

{Iteration Step

repeat
select,; that maximizeA[i, j]
if Afi,j] > 0then
pa; — (pa; U{X;})
for X, € Pred;, X, € Desc; do
Ala,b] «— —oco  {Prevent loop}
for k — 1tondo
if A[, k] > —oo then
Ali, k] — (mi(pa; U{Xx}) — mi(pa;))
until (A, 5] < 0) or (A, j] = —00), Vi,
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Heckerman et al. (1995) discuss and evaluate learning structure of Bayesian networks
using hill-climbing and other variants of greedy search. Empirical studies of search algo-
rithms for learning structure on Bayesian networks can be found in (Aliferis and Cooper,
1994; Chickering, 1996; Spites and Meek, 1995). See (Chickering, 1996) for search over

equivalence network class.

5.4.3 Model Selection by Dependency Analysis

Learning structure of Bayesian networks by dependency analysis is based on performing

conditional independence tests on subsets of edges in the network graph. Two types of tests
are typically used: statistical tests and information theoretic tests. Statistical approaches

based ony? tests have been used in (Spites, Glymour, and Scheines, 1991; Wermuth and

Lauritzen, 1983). The use of information theoretic tests has been investigated by (Cheng,

Bell, and Liu, 1997a; Cheng et al., 1997b). The drawback of using conditional indepen-

dence tests is that they require large data sets when condition-sets are large.

Learning Tree Structures

Computation of conditional independence tests can be quite efficient when condition-sets
are small. We can restrict size of the condition-sets by putting constrains on the graph
representing the Bayesian network. Chow and Liu (1968) proposed to represent the condi-
tional dependence between random variall&s, . .., X,,} by a tree. A directed acyclic
graph onr{ X1, ..., X,,} is atreeif each variableX; has exactly one parent, except for one
variable that has no parent (this variable is referred torasth. An example of a Bayesian
network that has a tree graph structure is presented in Fig. 5.3.

Chow and Liu (1968) weighted edges in the full graph using mutual information crite-
rion:

I(x;, x; (x;, ;) lo p(Ti, ;) )
) = 3 o) o (LT 533

Tq,Tj
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Figure 5.3:Bayesian network that has a tree graph structure.

Then they find a maximum spanning tree (Cormen, Leiserson, and Rivest, 1990) in that
full graph. (Chow and Liu, 1968) also demonstrated that the joint probability distribution
represented by the tree, constructed using their method, is an optimal approximation of the
true probability distribution (under assumption that the true distribution represents a tree
dependence among the variables). Despite restrictions imposed on the dependency among
random variables, this is an attractive method of Bayesian network construction due to its

low computational complexityO(n? - N)) and its optimality properties.



Chapter 6

Bayesian Network Classifiers

A Bayesian network can be used for classification in a quite straightforward way. One of the
variables is selected as a class variable, and the remaining variables as attribute variables.
Inference methods presented in Section 5.2 can be used to calculate marginal distribution
of the class variable, see Fig. 6.1.

In general, we could use any of the Bayesian network structure learning methods pre-
sented in Chapter 5. Most of these methods are aimed at approximating the joint distri-
bution of the set of random variablds,, ..., X,,}. Classification, however, uses only
the marginal distribution of the class variable, which suggests the use of more targeted

Bayesian network learning methods. This section presents the most important results re-

(&
W

Figure 6.1:Bayesian network classifier.
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lated to construction of Bayesian networks for classification.

-----

examples,F = {F,},—1.. is a set of M testing casesD;, = {aV,c} wherea =
{z1,..., 2,1} is the configuration of attribute variables, ane- z,, is the configuration

of the class variable. We also denote dy= {cV),...,c™} anda = {aV,... o™}

sets of class values and attribute values, respectively, corresponding to the training cases

D = |a,c].

6.1 Bayesian Approach to Classification

A classification problem is that of assigning a correct class label to a set of attributes. The
classification error rate or error of prediction is the most commonly used measure of

classification quality:
1 M
- Ak) _ (k)
€= 17 kg_l(c ") (6.1)

whereé®) denotes the correct class aritd is the predicted class for thié" case.

If the goal is to minimize error in prediction, the decision theory says we should choose
classc’ to maximize the posterior class probabilityt’|a’, a, ¢). This is the posterior aver-
age of the class probabilities predicted §6from all possible class probability structures

Sh:

p(d|d,a,c) = Z/g p(c|d’, S",0s) p(S", 8sl|a, c) dbs
Sh S

(6.2)
— Zp(Sh\a, ¢) Eggshac(p(c]d’, 5", 05))
Sh
where the summations are over the space of all possible network strusfysd
p(s'ae) x| plela".05) p(s".0s) dbs, 6.3)
0s

Eoy 51 a.0(p(c|d', S*,05)) = / (|, S 0) p(0s|S" a.c) ds  (6.4)
0s
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Figure 6.2:Bayesian network representing dveBayes classifier.

Eq. (6.2) simply says to average the class predictions made for each network structure.
Wherep(S"|a, c), the posterior probability of the network structui®, is the weight used

in the averaging process. In this formula,S", 8s) is the prior on the space of class
probability networks, ang(c|a, S, 8s) is the likelihood of the training sample.

Note that the classification learning problem given by Eqg. (6.2) is similar to the prob-
lem of learning network structure given by Eq. (5.10). However, Eqg. (5.10) describes the
joint probability distribution of a new unobserved case; = {a},...,a,, ;,c'} given the
training sample®, while Eq. (6.2) describes marginal distribution of an unknown atass
given known values of attributes = {d}, ..., a/, ;} and the training sample3. As with
Eq. (5.10), direct use of Eq. (6.2) is not practical due to summation over all possible net-
work structuresS®. Thus, the algorithm design strategies for Bayesian network classifiers
are based on designing heuristic procedures to find a single structure or a set of structures

that can be used to approximate Eq. (6.2).

6.2 Nave Bayes Classifier

The ndve Bayes classifier have been popularized by Duda and Hart (1973). Its simplic-
ity, efficiency, and low classification error rate make it one of the most commonly used
classifiers. The rige Bayes has a fixed structure and adjustable parameters. The structure

can be represented by a Bayesian network: the class node is a parent to all attribute nodes,
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Figure 6.3:Bayesian network representing a tree augmentéderBayes classifier.

and there are no edges between the attribute nodes, see Fig. 6.2. In other woids, a na
Bayes classifier assumes that all the attribute variables are conditionally independent given
the class variable. Despite that, these assumptions are in most cases unrealisiicethe na
Bayes classifier performs in many cases as well as state of the art classifiers. Recently, its
properties has been intensively studied, especially by Langley (Kononenko, 1990, 1991;
Langley, Iba, and Thompson, 1992; Langley and Sage, 1994; John and Langley, 1995;
Langley and Sage, 1999). Theiwa Bayes classifier has been an inspiration for a number

of other classification approaches. Two of them, that make use of Bayesian networks, are

presented below.

6.3 TAN — Tree Augmented Néave Bayes Classifier

The main drawback of the nae Bayes classifier is the assumption of conditional indepen-
dence of attributes. Friedman et al. (1997) proposed a method that introduces dependencies
among attributes using the network construction method of Chow and Liu (1968) —it is as-
sumed that dependencies among attribute nodes can be represented by a tree structure, see
Fig. 6.3. The TAN algorithm (tree augmentedveBayes) has complexitY(n?® - N) and

has been demonstrated by Friedman et al. (1997) to perform as well or better than na
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Figure 6.4:Example of a Bayesian network generated by K2-AS algorithm.

Bayes classifier and C4.5 classifier (Quinlan, 1993).

6.4 BAN —Bayesian Network Augmented N&ve Bayes Clas-
sifier

This approach is similar to the one in the previous section. TAN augmentsitheBayes

with dependencies among attributes having a tree structure. BAN augments/hBages

with a general Bayesian network of dependencies among the attributes. The network of de-

pendencies among attributes may be constructed using any of the structure learning meth-

ods presented in Chapter 5. Unlike TAN, BAN cannot be constructed in a closed form

because the problem of construction unrestricted Bayesian networks is NP-hard.

6.5 K2-AS Algorithm

Singh and Provan (1995) combine attribute selection and Bayesian network construction
into a single algorithm, called K2-AS. The idea is to remove attributes that may not con-

tribute to classification; to construct a classifier network only from the “best” attributes.
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The algorithm consists of two phases:

attribute selection phaseln this phase K2-AS chooses the subset of attributesom
which the final network is constructed. The algorithm starts with the initial assump-
tion that A consists only of the class variable It then adds sequentially that at-
tribute whose addition results in the maximum increase in the predictive accuracy,
on the set of evaluation cases, of the network constructed from resulting set of at-

tributes. The algorithm stops when the addition of another attribute does not increase

predictive accuracy.

network construction phase K2-AS uses the final set of attributés selected in the at-
tribute selection phase to construct a network using training data. This is done by

applying the CB algorithm described in Section 5.4.2.

The K2-AS algorithm has a relatively high computational complexity. An example of a

network generated by K2-AS is shown in Fig. 6.4.



Chapter 7

Learning Bayesian Network Classifiers:

A New Synthesis

Graphical models, and Bayesian networks in particular, provide a powerful mechanism
for modeling problem domains that are characterized by a significant amount of noise and
uncertainty. Diagnosis of cardiac SPECT images is a perfect example of such a domain.
Chapter 5 discussed the general problem of modeling using Bayesian networks. Chapter 6
introduced use of Bayesian networks for classification. This chapter proposes a new ap-
proach to learning Bayesian network classifiers; it presents a family of learning algorithms
and estimates their complexity. In Chapter 8, we will present results of using these new
algorithms for analysis of cardiac SPECT data.

As pointed out in Chapter 6, the problem of learning Bayesian network classifiers is
different from the problem of learning Bayesian networks in that the former approximates
marginal distribution of a class variable, see Formula (6.2), while the latter approximates
joint distribution of all variables, see Formula (5.10). Bayesian network learning algorithms
presented in this chapter are specifically designed for creation of classifiers. Our objective
is to maximize classification abilities of the constructed networks, and at the same time to

minimize the complexity of learning algorithms. The proposed algorithms attempt to strike
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balance between these two contradictory objectives.

Our classifier learning algorithms are based on the search-and-scoring approach. The
performance of the algorithms is maximized by constraining the structure of searched net-
works and the use of network metrics well matched to the classification task. We were
inspired by a remarkable performance of the simplest Bayesian network classifier: the
nave Bayes. A significant amount of research has been devoted to study its performance.
The nave Bayes classifier makes strict assumptions about the modeled environment: all
of the parameter variables are assumed to be mutually independent. This assumption is
almost always violated in practice. However the performance of the iigayes is not sig-
nificantly imparted by this violation (bias). It is believed that the secret of tiverBayes
is that it has a small number of parameters allowing for their estimation with low variance,
even from limited number of training samples (Friedman, 1997). The low variance is able
to offset the bias in the estimation of the underlying conditional probability of the class
variable introduced by restrictive network structure. Our approach is based on extending
the ndve Bayes structure with the intention to minimize the amount of new parameters
added to the network.

One of the main factors contributing to steep increases in the number of parameters
is the number of parents for each variable in the network. The number of parameters
associated with each node in the network is exponential with the number of this node’s
parents. The first principle of our synthesis is to limit the number of parents for each node.
We will assume that each node has no more than two parents.

Our second assumption, constraining the structure of the network, is that any edge
between a class node and an attribute node is always directed away from the class variable
— a class variable has no parents. This assumption is dictated by the way an information is
passed between nodes in a Bayesian network during inference. When the value at a node
is known, the node is instantiated, and the node blocks any information passing from its

parents to its children. However, the information can be passed from children to parents.
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This property of Bayesian networks is calléedpendency separatigRearl, 1988; Jensen,
1996). Typically, when we perform inference about the class node, all attribute nodes
are instantiated. If an attribute node was a parent to the class node, then, since it was
instantiated, it would block the information path between its parents and the class variable;
it will make the class node conditionally independent from its parents. This is the situation
we would like to avoid in classification; we are only interested about the inference in the
class node and do not want to have superfluous edges and parameters in the network.

Friedman et al. (1997) introduced a tree-augmentédenBayes classifier, TAN, and
demonstrated that it benchmarks well on a number of data sets from UCI Machine Learning
Repository (Blake, Keogh, and Merz, 1998). Friedman et al. (1997) assume that every
attribute depends on the class variable as is the case in'ive Bayes network structure.
Then, they extend the ne Bayes network structure by adding tree-like dependency among
attribute variables. In their approach, there is always an edge from the class node to every
attribute node, and there is always an undirected path between any attributes that do not
pass through the class variable. This may force dependencies between random variables in
the model that do not exist in reality, thus deteriorating classification performance.

We relax both of the constraints posed by Friedman et al. (1997) as well as restrictions
imposed by nive Bayesian classifier. In our approach, not all attributes need to be de-
pendent on the class variable, and there can be no undirected path between two attribute
nodes. We introduce a family of network construction and search algorithms. Each of the
algorithms in our family differ in the trade-off it makes between computational complexity
and richness of the possible network structures it can create.

A naive Bayes classifier has a fixed structure; only parameters can be learned. TAN
classifier builds a classifier network using dependency analysis based on calculation of
the mutual information among attribute variables. Our approach uses search and scoring
for construction of Bayesian network classifiers. However, we also make use of mutual

information to partially limit the domain of search and enhance algorithms’ performance.
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Figure 7.1:Family of the new Bayesian network classifiers with their relation tvena
Bayes and TAN classifiers. The new algorithms are represented in color, the

old in black.

Fig. 7.1 depicts richness of structures produced by each of the algorithms in our fam-
ily and their relationship to rime Bayes and TAN classifiers. Each algorithm performs a
heuristic search through its domain of network structures. The heuristic can be modified
by using different structure scoring measures. The search algorithms and quality measures
we use are described in the remainder of this chapter.

Each of the search algorithms is created from algorithm primitives that wepeait
ators By combining our operators we can produce any of the Bayesian network learning
algorithms presented in Fig. 7.1, includingiveaBayes and TAN. We estimate the com-
plexity of each of the operators and show how to combine them to build network search
algorithms.

Presentation of quality measures, that are used for scoring models found by the search
algorithms, is proceeded by discussion of learning network parameters and inference op-

timization. The chapter ends with a summary of complexity of complete algorithms for
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learning Bayesian network classifiers and discussion of the discretization of continuous
variables. Empirical evaluation of performance of the new family of Bayesian network

classifiers is presented in Chapter 8.

Notation

The following notation will be used in this chapter.

B — Bayesian network over random variables,, ..., X,,}, B = (S, ).

S — directed acyclic graph representing structure of a Bayesian network.
6 — parameters of a Bayesian network.

X; — discrete variable having possible configuration&cgl), . 71‘(”)}.

(2

Pa; — setofp parents of variablé(;, {pa,;,...,pa,,}, havingg; possible configurations

{pd",... pd"}.
C - the class variable. We use a convention whgre X,,.

A — set of attribute variable§A;,..., A, 1}. We use convention wherg; = X; for

~ — set of attributes dependent on the class variable

A — set of attributes independent from the class variéble

|X|| = cardinality, number of elements, of ¢t

D — set of training cases, random samples (no missing values).
N — number of training case§®| = N).

Niji — number of cases i® where the random variabl¥; is in configurationt and and

its parentsPa;, are in configuration.
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Algorithm 7.1 Class dependency creation operator.
CLASS-DEPEND(S,~, D)

1. S« &S

2. for eachvariable; € v do

3. Add directed edgéC’ — ;) to structure networl§
4. return S

N;; — number of cases i where parents of the random variatg are in configuration
v Nij = 32520 Nijie

q(S, D) — Bayesian network structure quality function. The higher the valyelué better

structureS models training data sé?.

7.1 Search Operators

7.1.1 Class Dependency Creation Operator

We start by presenting a simple utility operator that extends network strugtoyeadding
to it dependencies between the class nodend attribute nodes in sgt This operator is
utilized by some of the search operators, and can be directly used to create a structure of a

nave Bayes classifier. The operators algorithm is presented in Alg. 7.1.

Numerical Complexity

Numerical complexity of the CAss-DEPENDoperator:

Ociass-Dereno = ||7Y]- (7.2)

where||~v|| is the cardinality of sef.
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Algorithm 7.2 SAN class dependency discovery operator.
SAN(D, ¢, AUGMENTER)

1. ~v«— @ {set of attributes dependent on the class varigble

2. XN — A ={A,...,A,_1} {setof attributes independent from the class variable
3. ¢« — {highest value of quality measure so far

4, for i=1,...,n—1 do

5 Select an attributed € A that maximizes quality measurg B, D)

where networkB «— AUGMENTER(y U {A}, A\ {4}, D, ¢)

6. if ¢(B,D) > q then
7. B — B

8. ¢ < q(B,D)

0. v — yU{A}

10. A — A\ {4}

A

11. return B

7.1.2 SAN Dependency Discovery Operator

The first search operator introduced is caleelective Augmented Na BayegJSAN).
This operator discovers dependencies between the class variavid attribute variables
A;. If all of the attributes depended on the class variable, then, the Bayesian network would
have the structure of an augmentedveeBayes classifier (for instance TAN). However, the
task of SAN is to determine which of these dependencies are actually needed. Additionally,
at each step, SAN augments the discovered structure of dependencies between the class
variable and attribute variables by application of the operatoGMENTER. The SAN
algorithm is presented in Alg. 7.2.

The SAN operator performs a greedy search of possible edges from the class variable
C to attribute variablesA. It starts with an empty set of children and, at each step, adds a

new child that is optimal according to network structure quality meaguiéhe children
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of nodeC are elements of sef, while setA contains these attribute variables that are
not directly dependent ofd. For each configuration of childrer;, dependencies among
attribute variablesA are determined by a suitably chosen operatoGMENTER. The
AUGMENTER operator takes as an input dependencies between the class vatiabk®
attribute variablesA, represented by set_; U { X}, and learns additional dependencies
among attribute variabled using the set of training casés SAN selects the network that
corresponds to configuration of childran with the highest score according to the quality

measurey.

Numerical Complexity

Numerical complexity of the SAN operator depends partially on the numerical complexity
of the measure used to evaluate the quality of created netwark, and on the numerical
complexity of the AIGMENTER operatorOaucventer-

Complexity of steps 1 to 3 is constant. Complexity of step[BN§- (O, + Oavementer)-
Remaining steps in thier loop have constant complexity. The loop is repeated times.

Thus the complexity of the SAN operator is

OSAN = n2 : (Oq + OAUGMENTER)- (7-2)

7.1.3 SAND Dependency Discovery Operator

OperatorSelective Augmented Na Bayes with DiscardinBSAND) is similar to operator
SAN. It discovers dependencies between the class var{@atdad attribute variablesl;.

Unlike SAN, however, operator SAND discards attributes that are not determined to be
dependent on the class variable before applying the MENTER operator. In effect, oper-

ator the SAND performs attribute selection, determines which attributes do not contribute
to the classification goal, and discards them from the classification network. The difference

between networks produced by SAN and SAND is illustrated in Fig. 7.2. This figure as-
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(a) SAN (b) SAND

Figure 7.2:Examples of networks produced by SAN and SAND operators.

sumes that a tree augmentation is used (see the very next section). The pseudo-code for the

SAND algorithm is presented in Alg. 7.3.

Numerical Complexity

Numerical complexity of the SAND operator is the same as the numerical complexity of

SAN:

Osanp = n2 : (Oq + OAUGMENTER)- (7-3)

7.1.4 Tree-Augmenting Operator

The tree-augmenting operatorREE-AUGMENTER, is a generalization of the tree-aug-
mented né&ve Bayes classifier, TAN, discussed in (Friedman et al., 1997). The difference
is that, unlike TAN, we do not require that all of the attribute nodes depend on the class
variableC. Operandy specifies attributes that do depend on the class variable, op&rand
specifies additional attributes for augmentation that do not depend on the class node. The
tree-augmenting operator working is presented in Alg. 7.4.

The operator builds the augmenting tree using an extension of algorithm proposed
by (Chow and Liu, 1968), see also Section 5.4.3. The difference is in the way the mutual

information function is computed. Since some of the nodes depend on the class variable
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Algorithm 7.3 SAND class dependency discovery operator.
SAND(D, q, AUGMENTER)

1. ~v«— @ {set of attributes dependent on the class varigble

2. XN — A ={A,...,A,_1} {setof attributes independent from the class variable
3. ¢« — {highest value of quality measure so far

4, for i=1,...,n—1 do

5 Select attributed € A that maximizes quality measurg B, D)

where networkB < AUGMENTER(y U {A}, @, D)

6. if ¢(B,D) > q then
7. B« B

8. q < q(B,D)

9. v — yU{A}

10. A — A\ {4)

11. return B

we use this information while computing conditional mutual information. The following
formula is using conditional (on class varialdl¢ or unconditional probability of variables

X andY depending whether they are members ohkset not:

( ou PEule)
%p(w,y@ 1 gp(x|c)p(y|c) if XeyAY €,
(z,ylc) :
S p(a.yle) -log i X ey AY ¢4,
L(X;Y)={"™ p(f |C)p|(@)’) (7.4)
o P yle :
%p@M@lga@Hma if X¢€yAY €7,
o DY) -
\%p@w)lgmwmw if X&yAY &7.

Numerical Complexity

The loop in step 2 is repeated|y U Al|(|ly U Al — 1) times. Complexity of computing

the mutual information in step 3 depends on the number of states taken by attrdbates
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Algorithm 7.4 Tree-augmenting operator.
TREE-AUGMENTER(«Y, A, D)

G «— o

for each pair of variable§A;, A;} C yUX suchthatA; # A; do
wij — Iy(Ai; Aj)
Add undirected edg¢A; — A;) to graphG

T < MAXIMUM -SPANNING-TREE(G, w)

o a0k~ w0 bdRF

Order edges in undirected tréeby choosing one node as the root and setting

the direction of all edges to be outward from it, then convert it to Bayesian network
structureS

7. B — CLASS-DEPEND(S,~,D)

A

8. return B

A;. Assume that the maximum number of possible states,ify then the complexity of

step 3is2, ., and complexity of the loop in step 2 is

max?

Oy = Iy UAJ? -2

max*

We assume here that the maximum spanning tree algorithm is implemented using Prim’s
algorithm (Cormen et al., 1990). Complexity of the Prim’s algorithm implemented using
Fibonacci heaps i& + V log V where E is the number of edges and is the number of

vertices in graplt. In our casefl = £ ||y UA[|(|[y UA[| — 1) andV = ||y U A|.
1
Os = O (51\7 Uy WA =1) + [lv U [ Tog (fly U M!)) = [y uAl®
Os = [vUA|

O7 = |l

02405+ 06+ 07 = O(|yUA? 1202)

max
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Hence the complexity of the tree-augmenting operator is

OTree-AucMeNTER = ||'Y U >\||2 : T,Qnm- (7.5)

7.1.5 Forest-Augmenting Operator

The tree-augmenting operatorREE-AUGMENTER, creates a path between each of the
nodes. This may create dependencies between variables in the model that are not re-
ally present. To alleviate this problem we introduce a forest-augmenting operator called
FORESFAUGMENTER. It can create dependencies between variables in a form of a num-
ber of disjoint trees. It may also determine that there is no dependency between attributes
creating a nive Bayes classifier; or that all of the nodes are connected by a single tree and
create the TAN classifier. An algorithm for learning Bayesian network classifiers based on
the FORESFTAUGMENTER operator can be more robust then eitheivadBayes or TAN
algorithms. It can create not onlyiva Bayes or TAN network structure, but a number

of other, intermediate, classifier structures, thus having a better chance of finding optimal
approximation of the probability distribution of the class variable. The forest-augmenting
operator works as shown in Alg. 7.5.

The forest-augmenting algorithm utilizes a specific property of Kruskal's maximum
spanning tree algorithm (Cormen et al., 1990). Kruskal’s algorithm builds the spanning tree
by adding legal edges in order of their decreasing weights. This way it maintains a graph
containing a forest of disjoint trees. The branches of these trees in the forest are clustered
by strongest dependency among the node variables. Dr&E$&FFAUGMENTER operator
uses the way Kruskal's algorithm was adding new edges as a heuristic for "growing” a

forest of dependencies between argument nodes.

Kruskal's maximum spanning tree algorithm

Kruskal's maximum spanning tree algorithm is presented in Alg. 7.6. The algorithm makes

use of the following supporting operations for maintenance of disjoint-set data structures:
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Algorithm 7.5 Forest-augmenting operator.

FORESFAUGMENTER(y, A, D, q)

1. G «— o
2. for each pair of attribute§A;, A;} C v U X, such thatA; # A; do
3. wi — Iy(Ai; Aj)
4. Add undirected edge¢A; — A;) to graphG
5. T <« MST-KRUSKAL(G,w) {Kruskal's maximum spanning trge
6. Direct edges i’
7. E < setofedges i sorted in decreasing order according to weights
8. B « CLASS-DEPEND(@,~,D)
9. ¢ « —x
10. for everyE; € E, in order of decreasing weightdo
11. Add edgeF; to networkB
12. if ¢(B,D) > ¢ then
13. q — q(B,D)
14. B — B
15. return B
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Algorithm 7.6 Kruskal’s algorithm for finding maximum spanning tree in a graph.
MST-KRUSKAL(G, w)

T «— o
for each vertew € V|G| do
MAKE-SET(v)

Sort the edges df by non-increasing weight

1
2
3
4
5. for eachedgéu,v) € F, in order by non-increasing weigtdo
6 if FIND-SET(u) # FIND-SET(v) then

7 T — TU{(u,v)}

8 UNION(u,v)

9

return T

MAKE-SET(x) creates a new set whose only member (and thus representative) is pointed

to by z. Since sets are disjoint, we require thatot already be in a set.

UNION(zx, ) unites the dynamic sets that contaiandy, saysS, andsS,,, into a new set that
is the union of these sets. The two sets are assumed to be disjoint prior to operation.
The representative of the resulting set is some membét, of S, although many
implementations of MION choose the representative of eittigror .S, as the new
representative. Since we require the sets in the collection to be disjoint, we "destroy”

setsS, andsS,, by removing them from the collectios.

FIND-SET(x) returns a pointer to the representative of the (unique) set containing

MST-KRUSKAL algorithm builds the maximum spanning tree by performing a greedy
search, at each step adding to the structuisafaedge with highest weight. It maintains,
at each step, a forest of trees that eventually are joined into a single tree. The complexity
of MST-KRUSKAL is O(F log E'), whereE is the number of edges (Cormen et al., 1990).

The fully connected graph hé/é‘g;” edges, wheré&” is the number of vertices in graph
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G. The complexity of Kruskal's algorithm, in our case($V%log V).

Numerical Complexity of Forest-Augmenting Operator

The numerical complexity of the forest-augmenting operator can be estimated as follows.

Oy = [y U7,

Os = [vUA|log |y U
Os = [[vUA|

Os = ||

There are||v U A|| — 1 edges in the maximum spanning tree, thus
Ow=0(lvyUAl=1)-0) = [[vUA[-0O,
wereQ, is the complexity of calculating quality measure
02405+ Og + Og + O19 =

O([[v U r2e + YU - log [y UA| + [[Y U - O,)

Hence the complexity of the forest-augmenting operator is

Ororestavsmenter = |7 U )‘”2 : Tfnax + [y U }‘H2 log [y UA[[ + [[vUA| - Oy (7.6)

7.2 Search Algorithms

Using the five operators presented above we can create a family of search algorithms for
learning Bayesian network classifiers presented in Fig. 7.1. The computational complexity
of each of the algorithms in this family is summarized in Table 7.1. Notice that the first two
algorithms that are created using our operators are well knoive Bayes classifier (Duda

and Hart, 1973) and tree-augmentedveaBayes (Friedman et al., 1997). These two algo-
rithms do not perform an actual search, so their only argument is the training dRtaset

The remaining algorithms also take as an argument a network quality measure



79

Table 7.1:Family of search algorithms for learning Bayesian network classifiers and

their complexity.

Algorithm Operator Composition Core Complexity
NAIVE BAYES(D) CLASS-DEPEND(9, A, D) n
TAN (D) TREE-AUGMENTER(A, &, D) n?-ri ..

FAN(D, q) FORESFAUGMENTER(A, 3, D,q) | n? 12, +n? -logn+n-0,
STAN(D, q) SAN(D, ¢, TREE-AUGMENTER) ntor2 . +n? 0y
STAND(D, q) SAND(D, ¢, TREE-AUGMENTER) nt-r2 . +n* 0,
SFAN(D, q) SAN(D, q, FORESFAUGMENTER) | (n*rZ,, +n*logn +n*0y) O,
SFAND(D,q) | SAND(D, ¢, FORESFAUGMENTER) | (n*r2,,, + n*logn +n®0,) O,

One of the hidden costs of all the algorithms presented here is the estimation of prob-
abilities, or strictly speaking frequencié€g;;, that are used for computation of mutual
information and determination of network paramet@rsThey are constant for a given
training data seD. Thus, when running several different algorithms on the data set we
can improve the performance by pre-computing these frequencies and then passing them
to each of the algorithms. We will present the complexity of complete algorithms after we

introduce issues related to parameter learning, inference, and quality measures.

7.3 Learning Parameters

We have assumed that all variablEsin the Bayesian network have unrestricted multi-
nomial distribution (if a dataset contains continuous variables it is discretized, as will be
described in Section 7.7). Each local distribution functi§rassociated with variabl&’;

is a collection of multinomial distribution®;;, one distribution for each configuration of

parentsPa;. We assume that

p(wﬂpa{, 0;,S") =05, > 0 (7.7)
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In other wordsg,;,, denotes the probability that variabl¢ is in configurationt and its
parents are in configuratighn And that this probability is always greater than zero.
0; = ((0ijr),—,)j, denotes all the parameters associated with variable Index &

starts from2 since parametei;; can be calculated using

Oip = 1= O
k=2

Vector of parameters associated with each local distributipis denoted by

91] = {Qij% s 79ZJT’1}
We will denote byr; number of configurations of variabl&; and byg; the number of
parent configurations of variablg;:

g = H Tp (7.8)

Xp€EPa;
7.3.1 Parameter Estimation

The material presented in this subsection is based on (Heckerman, 1996). We present it
here to introduce some notions and assumptions about parameter probability distribution
that are used in the remainder of this chapter; in particular, parameter priors that are also
utilized by quality measures.

As stated in Section 5.3, problem of learning Bayesian network parameters given net-
work structure and training data sét is that of computing the posterior distribution
p(0]D, S™). The posterior distributiop(0|D, S") can be efficiently computed in closed
form under two assumptions (Heckerman, 1996). The first assumption is that there are no
missing data in the training data st The second assumption is that parameter vectors

0,; are mutually independent:

no g

p@61s") = [T I1Ir@:15"

i=1 j=1
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Under assumption of complete data and parameter independence, the parameters remain
independent given the data get
p(8|D, S HHp 0,,|D, S")
=1 j5=1
This lets us update each vector of parameters independently.

We further assume that each veafprhas a prior Dirichlet distribution

azy aip—1
0.7 7.9
Hk y Teijn) H k (7-9)

where o;; = 2?:1 o, and a;;, > 0. Since Dirichlet distribution is the conjugate prior

p(OW) = Dir(Oij|ozij1, .. 705ij7‘1-)

to multinomial distribution we have
p(0”|p, Sh) = Dir(@ij|aij1 + Nijly e ,aim + Nijri) (710)

whereN; ;. is the number of cases 1 in which variableX; is in configuratiork, X; = ¥,
and parents ok; are in configuratiory, Pa, = pa’.

Given the data séP and network structur€” we can estimate parametetsdy aver-
aging over all possible configurations@f Using Eqg. (7.7) we have that the probability of
a new unobserved cas&V+!

p(X(N+1)’D’ Sh) = Ep(9|'D,Sh) (H 913k>
=1

where E denotes expected value. From the assumption of parameter independence, given

data setD

N N
p(xN YD, §h) = / Heijk p(8|D,S") do = H / 0.5 p(;5|D, S") dO;;
=1 i=1

From Eq. (7.10) and properties of Dirichlet distribution we can estimate paramMgieas

follows (Heckerman, 1996)

n B n i + NZ
p(x™ D, §h) = H%k _ Hﬂ’f—Nﬂk (7.11)
i=1 o Qg T Vi
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7.3.2 Selection of Priors

Selection of priors, or in our case Dirichlet prior parameters, is a very important and
difficult problem. Priors enable us to encode prior knowledge about the problem domain.
They can be used to improve generalization properties of networks with empirically esti-
mated parameters. Sizable research effort is devoted to selection of priors. However, we
opt here for a relatively simple solution.

Cooper and Herskovits (1992) in their work on the K2 Bayesian network learning al-
gorithm suggested a simple uniform assignment = 1. Buntine (1991b) suggested the
uniform assignment that is dependent on the number of the variable configurations and
number of configurations of its parents,;, = ﬁ We assume that all parametexs; are
equal, and make an arbitrary assumption that their values are in fange, 9} . There
is no particular reason for making this second assumption other than it gives a manageable

number of values. While creating a network we test each of these values and select one that

seems to be optimal for particular data set (based on experiments).

7.3.3 Numerical Complexity

Assuming that learning parameters includes computation of frequeNgieom the data

setD its numerical complexity is
OLearn-ParaM = T0 - 'f’ﬁm -N (7.12)

wherer,,.. IS the maximum number of states of each variable in the networky énthe
maximum number of parents of each node in the network.

Notice that we can conclude from Eg. (7.12) that controlling the number of parents
of each variable helps prevent combinatoric explosion in the complexity of learning algo-

rithms. If there was no restriction on the number of parents then the complexity of learning

IStrictly speaking we do not use valQdor «;;, but a small positive number close to zero. So that the

assumption given by formula (7.7) is always satisfied.
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would be more then exponential with the number of nodes in the network:
OLEARN-PARAM = n-: Tﬁm - N.

It is our intention that the algorithms presented in this chapter do not produce networks
that have more then two parents for each node so that the numerical complexity of learning

parameters is

OLearn-Param = 10 - szzz -N (7.13)

7.4 Inference

In this section we demonstrate that we can perform very efficient inference in our family
of classifiers applying directly formula in Eq. (5.5). This is significant since it allows for a
low computational complexity of inference, that is linear with the number of variables

As stated in Section 5.2: in general, direct application of Eq. (5.5) is not possible, and
the inference problem is NP-complete (complexity increases exponentially with number of
variablesn). Some of the quality measures, presented later in this chapter, use inference in
network they are scoring, thus lower complexity of inference means lower complexity of
algorithms that use those quality measures.

We can utilize specifics of the structure of networks created by algorithms introduced
in the previous section, in particular, that the class node has no parents. When a Bayesian
network is used as a classifier we are interested in the probability of the class node state
given the values of the attribute nodes states. All attributes are instantiated during the

evaluation. The joint probability distribution of a classifier network is

p(x) = plai,...,an_1,0)

whereq; are values of the attribute nodes, and the value of the class node.
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Using Eq. (5.3) we can express the probability distribution represented by a classifier

network as:

n—1 n—1

plar, ... an-1,0) = ] plailpa,,) - plclpa,) = ple) | [ plailpa,,)

i=1 i=1
p(clpa.) = p(c) since, in the networks built by our classifiers, the class node has no
parents.

Assume that the goal of our inference is to determine the probability that the class node
is in statek given states of attribute nodes, ..., a,_;. Using Eqg. (5.5) and replacing

integration by a sum (variables in our networks have multinomial distributions) we have

n—1
p(c™) I ] plailpa,,)
p(ePlay, ... any) = - Z:i,l
[p(c(”) 11 p(ai|paai)]
j=1 i=1
(*) 1
p(c™ay, ... a,1) = - — (7.14)
> [p(c(j)) Hp(ailpaa,)]
j=1 i=1
J#k

The above formula can be directly used for inference since for each term of the sum in the

denominator, all of the variables are instantiat€d= ¢\), andA4; = a;fori =1,...,n—1.

Numerical Complexity

Numerical complexity of performing inference using formula (7.14) is

OinFerence = 1 Tag- (7-15)

7.5 Quality Measures

Choice of a quality measure is crucial for achieving high performance of a Bayesian net-

work classifier learning algorithm. We argue, as stated in Chapter 6, that local measures,



85

that evaluate network at the class node, rather then global measures, that evaluate the com-
plete network without distinction for any particular node, are better suited for creation of
classifiers. We will test it empirically in Chapter 8. We will evaluate the performance of
Bayesian network classifier search algorithms using five quality measures presented in this
section. The first two are global Bayesian quality measures. The last three are local quality
measures.

Computation of a Bayesian network quality measure is associated with a specific nu-
meric cost. It may significantly increase the overall complexity of classifier learning algo-

rithm. For each of the presented measures, we also estimate its numerical complexity.

7.5.1 HGC - Heckerman-Geiger-Chickering Measure

This global Bayesian network quality measure is based on accessing the posterior proba-
bility of the network structure given the training data Betlt was proposed by Heckerman
et al. (1995) and calleBayesian Dirichletmetric. We will refer to it as HGC (from the last
names of the authors)

Quac =logp(D, S")

n

= logp(S) + Z

=1

qi F(aij) T F(aijk +Nz]k) (716)
jz_; [log I'(ay; + Nij) D log N ”

k=1

wherel is the gamma function:

I'(2) :/ t*~te~tdt.
0

In our implementation we use Lonczos’ approximation of functienl’(z) (Press et al.,
1992). We use logarithm df(z) sincel is a fast increasing function and can cause nu-
merical overflow even for moderate values:ofThe Lonczos’ approximation has constant
complexity.

Frequently, prior structure probabiligy(.5) is unknown and assumed to be constant
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over all possibleés. The HGS measure can be rewritten as follows.

QHGC’ =

n

qi T
Z [Z [log ['(cij) —log Iy + Nij) + Z log I'(aji. + Niji) — log F(%‘jk)”
7=1

1=1 k=1

n qi

QHGC = Z Z [log F(Oéij) — log F(Oéij -+ Nl])] +

== (7.17)

n qi Ti

Z Z Z log I'(cviji + Nijk) — log I'(evji )]

i=1 j=1 k=1
Numerical Complexity

We assume that frequencids;, are pre-computed; they do not need to be calculated sep-
arately for each evaluation of HGC. Maximum valuegfin Eq. (7.17) isrg Thus,

max*

complexity of computing the HGC measure is

OHGC = Nn- Tfn—;; (718)

7.5.2 SB - Standard Bayesian Measure

HGC measure rewards for good approximation of the joint probability distribution. It may
naturally prefer larger networks, since larger number of parameters allows for better fit.
However if the number of parameters is too large, overfitting to training data set occurs,
and the constructed network may have poor generalization properties.

It may be beneficial to prefer smaller networks. Since that may result in better gener-
alization properties. In a smaller network there are fewer parameters and variance of their
estimation from the training data will be smaller. Size of the Bayesian network can be

computed using the following definition (Castillo et al., 1997).

Dimension of a Bayesian NetworkLet X be a set of random variables

and B be a Bayesian network defined oveér The dimension of this network,
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Dim(B), is the number of free parameters required to completely specify the

joint probability distribution ofX.

Dim(B) can be computed as follows:

n n

Dim(B) = Z(rl - 1)q= Z(rl - 1) H Tp- (7.19)

i=0 i=0 X,€Pa;
Castillo et al. (1997) presented a global Bayesian measure that is proportional to the
posterior probability distributiom(S, 8|D) with an added penalty term for the network
size. They call iStandard Bayesiameasure. Below is a simplified derivation. We include
it here since it makes some assumptions that are less common among other authors that
typically follow approach presented in Section 7.3.1. The main difference is in the way
network parameters are estimated.

Posterior probability of the network given training sample®:

p(S,0,D)
p(D)

Since that data s&? is the same for the networks that are compared (p(D) is constant) then:

p(B|D) = p(S,0|D) = (7.20)

p(S.6|D) o p(S.8,D) = p(S)p(6]S)p(D]S, ) (7.21)
The Standard Bayesian measure or SB is given by formula:

. A 1
Qp(B(0),S) =logp(S) +logp(8|S) + log p(D|S, 0) — §Dim(B) logN  (7.22)

Castillo et al. (1997, p.494) assume thas the following posterior mode

~

0 = arg max log p(6|5, D) (7.23)

Assuming that all variables in the network have multinomial distribution we have

no q T

p(015) o TTTTTT 05 (7.24)

i=1 j=1 k=1

no q T4

p(Dl5,0) o [T TTTT 05" (7.25)

i=1 j=1 k=1
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b _ ik + Nigr — 1

ik = 7.26
ik Oéij + Nij —T; ( )

If we assume, as before, thatS) is constant then we have the following formula for

the standard Bayesian measure for multinomial distribution:

n i T

Qsp(B,D) = ZZZ(Nz‘jk+aijk—1)10g h T Lk

i=1 j=1 k=1 ij T Qg i

(7.27)
1
b Dim(B)log N.

Numerical Complexity

As before we assume that frequenclés, are pre-computed. The numerical complexity of

computing the Standard Bayesian measure is the same as the complexity of HGS measure:

Osg = n-r2'! (7.28)

max-*

7.5.3 LC - Local Criterion Measure

Spiegelhalter, David, Lauritzen, and Cowell (1993) suggested the following local criterion
measure that could be more adequate for construction of classifiers than global quality

measures:
N
LC(S", D) =) _log p(c[a®), D, ") (7.29)
=1

where index represents thé" training case¢" is value of the class variable anad is
the configuration of attributes in tHé case D® = {z() . . (-1},
The modelS is trained sequentially with the firét— 1 cases, then tested with tie
case. This is a form of cross-validation where the training and testing cases are never
interchanged. This measure can be interpreted as a local version of the global Bayesian

measure HGC.
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Numerical Complexity

There areN operations of parameter learning and inference with these new parameters.

Frequencies can be calculated cumulatively reducing complexity of learning parameters:

ON-n- Ty +N-n-r

max )

Thus numerical complexity of the LC measure is

Oc =N-n-r8,, (7.30)
7.5.4 LOO - Leave-One-Out Cross Validation
Let V, represent the training data $etwith the (" instance removed:
= D\ {xV} = {xO x(7D x D x Wy (7.31)
Global Leave-One-Out Cross Validation Measure
The globalleave-one-outross validation criterion can be defined as
LOO, 10501 (S", D) Z log p(xV|V;, S") (7.32)

Heckerman (1996) argues that this criterion is less fit for grading models than the HGC
criterion (Eq. 7.16). He follows the argument of David (1894) that LQQ criterion
overfits the model to the data. In LQR),, training and testing cases are interchanged. It

is not the case with th@ ;¢ criterion:
Quco = logp(D,S") = logp(S") +log p(D|S")
N
= logp(S") + Zlogp Dix® . xU=D ghy
Notice that the last term in the above equation is similar to terms in Eq. (7.32). However the
term in the above equation represents incremental predictiod8|x™®), ... x(—1) Sh)

without mixing the training set and the testing set (training set is being incrementally en-

larged).
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Local Leave-One-Out Cross Validation

The LOQ,., measure given by Eq. (7.32) is not suitable for classification since it tests
the joint distributionp(x). We can modify it to test the marginal probability of the class

variableC' given configuration of attributeA:
N
LOO(S", D) =Y _p(cV[a®, v}, 5") (7.33)
=1

Notice that this measure is very similar to the local criterion measure LC given by Eq. (7.29).

The above Heckerman’s argument may be also applied to comparing local LOO with LC.

Numerical Complexity

Two components contribute to complexity of evaluating LOO: inference performed to eval-
uate conditional probability of the class variable and learning of Bayesian network param-
eters. The training data sgtis changedV times during the evaluation LOO. This requires
that network parametefsbe estimatedV times, for eaclV; separately. A straightforward

implementation of LOO would then lead to following complexity:

O(N-(n-r2, -N4+n-rm)) = n-r8, - N?

max max

Careful implementation through, by temporally modifying the frequencies, may im-
prove the complexity. Instead of recalculating all of the frequencies for every data set
we can modify the frequencies for data $&tlepending which case is currently removed
from it. This may lead to more messy implementation, but can significantly improve the

complexity, especially for large data sets:

Ooco =O(N-(n-r8,,+n Tma)) =mn-12,.-N (7.34)

max max

7.5.5 CV,,—¢-Fold 7-Times Cross Validation

During ¢-fold cross validation, data s& is split into ¢ pairs of sets/; and)V,;. Data set

V), is used for training and data sg¥, for testing. For each = 1,...,¢ we have that
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V; UW; = D and the cardinality of the seV); is approximately one™ of the cardinality
of the setD:

1
IWill =~ 2 1IPl

The ¢-fold cross validation is repeatedtimes and the results are averaged. This defines

following quality measure:

T 7

¢ Wil
CV4.(S", D Z Z log p(c;|a®, V S (7.35)
=1

j=1 =1
Note that if we setp = ||D|| andr = 1 then measure CY; is the same as measure LOO.

Typically, howeverg andr are set constant and independent from the size of dafa.set

Numerical Complexity

As in the case of LOO, the complexity depends on parameter learning and inference. How-

ever, now parameter learning can be less frequent than evaluation <fay)

O<T¢(n Tfnaa} N%)—FTQﬁ%(nrmax))

Thus, the complexity of the cross validation measure,C\é
Ocv,, = T -¢-n-rl,,. N (7.36)

For example, for 10-times 10-fold cross validation and the network with no more than two

parents for each node the complexity would be

2
OCVm,m =n-r - N.

maxr

7.6 Complexity of Complete Learning Algorithms

Now, we are ready to combine structure search, parameter learning, inference, and quality

measures presented in previous sections to create a new family of complete algorithms for



92

learning Bayesian network classifiers. Table 7.2 presents estimation of complexity for each
of the algorithms in the family.

Derivation of these estimates is presented below. To simplify the final formulas, we
will assume that the number of variabless approximately equal to the maximum number
of variable configurations, ..., n =~ ., and thatn is much smaller than the number of

casesV in the training data setp < N.

Naive Bayes

Naive Bayes classifier does not perform a search, so its total complexity is its core com-

plexity (see Table 7.1) plus the complexity of learning parameters given by Eq. (7.12)
Onnive Baves = O (n + N Tmaz N) = N Tmaz - N
~ n:- N
Tree Augmented Ndve Bayes

TAN does not perform search thus,

Otan = O(nQ-riLm—i—n-rmm-N) = n-r? -(n+ N)

2
:OJ
=

Forest Augmented Nave Bayes

Complexity of the Heckerman-Geiger-Chickering and the Standard Bayes quality measure

are the same:

Oran-voc = Opanse = O (0% 1, +n% - logn+n-(n-rd ) +n- 1o, N)

max maxr max

= n2~logn + n2'7’fnm + n~r72mm~N

nd N

Q
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FAN classifier with either leave-one-out cross validation or local criterion quality measure:

Ofan-Loo = Orancic = O (n® -1l +n®-logn+n-(n-r2, - N)+n-r2, -N)

max maxr max

= n?-logn + n*- 12, -N +n-r:, N

max max

nt N

Q

FAN classifier with¢-folds 7-times cross validation quality measure:

Oran-cv,, = O(n2~r2 +n?-logn+n-(¢p-7-n-r2, -N)+n-r -N)

max max max

= n¥logn + ¢-7-n*-r:2 N +n-r2 N

max max

~ ¢-T-nt N
If we assume thap andr are constant and equal 10 then

-
OFaN-Cvy19 & 1 - N

STAN and STAND Classifiers

Numerical complexity of STAN and STAND is the same, so will derive complexity only

for the STAN classifier.

o _ 4 2 2 3 2
OSTAN-HGC = OSTAN-SB = 0 (n *Trazx +n°- (n : Tmax) +n- Tmazx N)
4 2 3 3 2
= n Tmax +n”- T maz +n Tmaz N
~ n®- N
4 2 2 2 2
Ostan-Loo = Ostantc = O (n'-rp,,+n°- (-1, - N)+n-r,, - N)
4 2 3 2
~ n°-N
4 2 2 2 2
OSTAN—CV¢,T = O(n -rmax—i—n -(qﬁ-r-n-rmax-N)—l—n-rmax-N)

4 2 3 2
=n-r,.+te-Tn-r, N

Q

¢-7-n°- N
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If we assume thap andr are constant and equal 10 then

4
Ostan-cvigp ® 1 - N

SFAN and SFAND Classifiers

Numerical complexity of SFAN and SFAND is the same, so will derive complexity only

for the SFAN classifier.

OSFAN-HGC = OSFAN-SB

= O((n4r2 +n*logn+n®- (n-r? ))-(n-r3 )—i—n-rf,wx~N)

max max max

_ .56 5.3 2
= n’ry .+ logn+n-r, o N
~ n’- N

Oskan-Loo = Ospan-Lc

= O ((n*rl, +n'logn +n*(nrl,N)) (nrie,N) +nr,

max max max

N)

_ 5,4 5.2
= n TmamN+ n Tmam

Nlogn +nSr% N*+4n.r2 N

max max

nlO . N2

Q

Osran-cv,, = O ((n4r2 +n*logn + n®(prnr? N)) (¢7nr2 N) + nrfme)

maxr maxr max

Nlogn+ ¢mnSrd N?4n.-12 N

_ 5,4 5,2

= n rmaxN +n rmax max max
~ ¢-17-n% N?

If we assume thap andr are constant and equal 10 then

10 A2
Osean-Ccvigy = 1 - N

7.7 Discretization

Discretization is a process in which a continuous scalar variable is replaced by a finite

number of labels. A discretization algorithm first divides the domain of a continuous vari-
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Table 7.2:Estimated complexity of algorithms for learning Bayesian network classifiers:

combination of search algorithms and quality measures.

Without With Quality Measure

Algorithm Quality Measure | HGC, SB| LC, LOO CVy.r CVio.10
NAIVE BAYES(D) n?- N
TAN(D) nd . N

FAN(D, q) . n®- N n*- N ¢-17-n* N n*- N

STAN(D, q) . n3 - N nd® - N ¢-7-n°-N nd - N

STAND(D, q) : n®- N n®- N ¢-17-n°- N n® N

SFAN(D, q) . n®- N nt0 N2 | ¢.7-nl0. N2 | pl0. N2

SFAND(D, q) . n3. N 0. N2 | ¢.7-nl0. N2 | pl0. N2

able into a finite number of non-overlapping intervals that cover the whole domain, then
replaces each instance of the variable by a label corresponding to an interval that contains
the value of that instance.

Some popular inducers have a discretization build-in (Quinlan, 1993; Holte, 1993;
Maass, 1994; Auer, Holte, and Maass, 1995). Typically, it is a matter of algorithm im-
plementation rather than an intrinsic feature of the algorithm. A “natural” way of dealing
with continuous attributes in Bayesian networks would be to use continuous distribution for
variables. However, there is no distribution that can handle a continuous variables as well
as a multinomial distribution can handle discrete variables. ikenBayes inducer models
continuous variables using normal distribution. Many practical variables, and in particular
ones considered in this work, cannot be sufficiently well modelled by normal distribution or
multivariate-normal distribution. Multivariate-normal distribution is popular primarily due
to its nice mathematical properties — it is a membeexgonential familyof distributions;
not because it is well suited to model real life probability distributions.

Friedman, Goldszmidt, and Lee (1998) unsuccessfully attempted to extend their tree-

augmented rige Bayes algorithm, TAN (Friedman et al., 1997), to be able to directly
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handle continuous attributes. They used normal distributions and mixtures of normal dis-
tributions to create a continuous version of the TAN. Results they obtained indicate no
improvement in classification of data sets with continuous variables.

Dougherty, Kahavi, and Sahami (1995) reported research that compares a number of
discretization methods. They demonstrate, using data sets from UCI Machine Learning
repository (Blake et al., 1998), that performance of continuous\eri2ayes inducer can
be significantly improved by discretizing the data sets and using a discrete versiaueof na
Bayes. The best discretization method reported by Dougherty et al. (199%hirsiraal
entropyheuristic presented in (Catlett, 1991) and (Fayyad and Irani, 1993).

Bearing the above in mind, we decided to limit our new family of Bayesian network
classifiers algorithms to handle only discrete features. Motivated by research of Dougherty
et al. (1995), we use the minimal entropy heuristic for discretization of datasets with con-
tinuous features (the heuristic is described below in Section 7.7.1). We first discretize the
training dataset using the minimal entropy heuristic, then use the discovered discretization

scheme to discretize the test data.

7.7.1 Minimal Entropy Heuristic

For the convenience of the reader, this section provides a brief description of the minimal
entropy heuristic. In short, the heuristic performs recursive binary cuts of the domain of
a continuous attribute into intervals. Cutting of intervals continues till a stop criterion is
reached. Each attribute is discretized separately.

Let A denote an attribute for which the discretization is performedcs an interval.
Let D be the dataset that is being discretized. We will denot®pw subset oD such that

values of attributed for each case i, are in intervalo:

D, ={x" : xU D and a¥ € w}
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Theclass entropyf dataseD,, is defined as:

Ent(D,,) ZP x| D) logy P(ck|D,) (7.37)

k=1

wherer,. is number of configurations of class variablgnumber of classesy’(cx|D,,) is
the proportion of the number of casesIyy when a class variable is in configuratiério
the total number of cases . Entropy EntD,,) measures the amount of information, in
bits, required to specify the classesn,.

We initially assume that interval contains all possible values of attribute that is
w = (—o0,0). Intervalw is then recursively partitioned through binary cuts to establish
a set discretization intervals, or discretization bins. We will denote the set of discretization

bins byB.

Binary Cut

Lett € w denote a threshold value,cat point for partitioning intervalv. Partitioning

creates two new intervals

wi = (a:a€wanda<t)
wy = (a:a€wanda>t)
This corresponds to partitioning the data®et into two dataset®,,, andD,,,. Dataset

D,,, contains these cases for which value of attribdiis less thert, Datase®,,, contains

remaining cases ifv,,:

D, = {x® :xYeD, anda? <t}
D,, = D,\ Dy,

Fayyad and Irani (1993) definectass information entropy of the partition induced by

t as:

H WlH H W2||
E(A,t; D, Ent(D,, Ent(D,, 7.38
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Optimal cut pointt for partitioning intervaly is determined by minimizingZ(A, ¢; D,)
over all candidate cut points

Note that the above minimization of the class information entropy is similar to heuristics
used for induction of decision trees by algorithms like ID3 (Quinlan, 1986), C4.5 (Quinlan,
1993), CART (Breiman, Friedman, Olshen, and Stone, 1984), or CN2 (Clark and Niblett,
1989).

“Cut or not to cut?”

To prevent indefinite recursive partitioning of created intervals, we need to decide whether
cutting of a particular interval is beneficial or not. It is a binary decision problem that
can be solved by Bayesian approach. K&t be hypothesis that partitioning interval

using a binary cut, described above, would improve error rate of classifier that uses the
discretization. LetV,, be a null hypothesis, that is the hypothesis that would result if the
partitioning ofw was rejected. For this decision problem, the Bayesian decision strategy is

to accept partitioning af when:
p(Hy|D) > p(N,|D)

Unfortunately, there is no easy way to compute probabilitigs,, |D) and p(N,|D)
directly. Fayyad and Irani (1993) proposed to approximate these probabilities using Mini-
mum Description Length Principle (Rissanen, 1978). This led them to the following crite-
rion. Partitioning of interval is accepted if and only if

logQ(HDw” - 1) A(A7t;Dw)

Gain(A,t;D,) >
1D || 1D, |

(7.39)

whereGain(A,t; D, ) is the information gain of the cut point

Do,
1D, |

Do

Gain(A,t;D,) = Ent(D,) — ~ D]

Ent(D.,,)

Ent(D,,) (7.40)
and

A(A,t;D,) = logy(3™ —2) — [r, EN(D,,) — e, ENY(D,,,) — re, ENY(D,,)| . (7.41)
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Algorithm 7.7 Minimal entropy discretization heuristic.

1. for every continuous attributd; do

2. P, «— PARTITION-INTERVAL ((—00,00), A;, D)

Algorithm 7.8 Recursive minimal entropy interval partitioning.
PARTITION-INTERVAL (w, A, D)

1. D, «{DY : DU e D anda¥ € w}

2. Find cut point € w such that'(A, t; D,,) is minimized.

1Og(||Dw|| B 1) A(Avt;Dw)

3. if Gain(A,t,D,) > then

1D, | 1D
4. wy «— (r : x€ewandr <t)
5. wy «— (x : x €wandxr >t)
6. By < PARTITION-INTERVAL (wy, A, D)
7. By < PARTITION-INTERVAL (w2, A, D)
8. B — BiUB,
9. else
10. B — {w}
11. return B

In general, datasé?, may not contain examples for each possible configuration of class
variableC. The number of class variable configurations that have examples in data set
D, is demoted by-.,. Similarly for dataset®_, andD,_,, it is denoted by, andr.,,,

respectively.

The algorithm

A discretization algorithm based on the minimal entropy heuristic recursively partitions the
domain of each of the continuous attributes. Its working is demonstrated in Alg. 7.7 and

Alg. 7.8.



Chapter 8

Experimental Results

This chapter presents the results of four experiments. The first experiment used the categor-
ical data about left ventricular perfusion recorded by cardiologists to estimate the reference
error rate for classification based on features extracted from SPECT image. The next two
experiments use features extracted from 3D SPECT images to perform classification of the
left ventricular perfusion. The last experiment benchmarks our new family of Bayesian net-
work classifiers using datasets from the University of California at Irvine Machine Learning
Repository.

Generation of cross validation partition, used during experiments, and discretization of
continuous attributes (the minimal entropy heuristic) had been performed using MLC++
package (Kohavi, Sommerfield, and Dougherty, 1997). Note, each of the training parti-
tions was discretized separately, then the discovered scheme was used to discretize a cor-
responding test partition. MLC++ had been also used as a front end to C4.5 classifier.

Implementation of C4.5 classifier was the one provided with (Quinlan, 1993).

8.1 Perfusion Classification Error Reference Level

Figure 4.2 shows a simplified perfusion classification process that is deterministic and en-

tirely based on classification of perfusion in each of the regions of interest. It is reasonable

100
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to stipulate that in practice this classification is more complex, non-deterministic, and in-
volves a number of other factors that are not recorded in the database or are recorded only
imprecisely. Cardiologist’s interpretation process is, to a large, extent qualitative. The data
recorded in the database are, by their nature, quantitative. Intentionally, there is only a
limited number of codes that can be used to record perfusion. The intention is that this will
standardize the recording process by limiting the number of recorded defect codes, each
code having a clear description. This igla factodiscretization process. A number of
cardiologists contributed to the database. Each of them may have a different bias how to
code that do not clearly belong to a single category. Also, interpretation of cardiac SPECT
images is complex and not an unambiguous process. There is a significant variability in
diagnosing of the same images between cardiologists (Cuaron et al., 1980). Additionally,
there is also some possibility of data errors present, eg. typos.

We use the perfusion classification recorded in the database by cardiologigisidsra
standardwhile constructing classifier based on features extracted from SPECT images. The
main objective of the experiment described in this section is to estigmidnes®f the
golden standard by estimating the perfusion classification error rate. In this experiment the
class variable will represent overall perfusion impression code recorded in the database.
The attributes will represent partial perfusion code recorded for each of the 22 regions of
interest presented in Fig. 4.1 and other information recorded in a study worksheet.

Note, that if classification of myocardial perfusion was completely deterministic, given
the classification within ROIs, then the reference classification error would be zero. Since
it is not, we wanted to estimate the perfusion classification error rate present in the golden
standard. This will help us to set a more realistic performance requirements for classifiers
that use only features extracted from SPECT images.

The secondary goal of this experiment is to see if some additional clinical information
that is recorded in the database, for instance, patient's gender, weight, etc., may be useful

in perfusion classification. We want to determine whether additional patient information
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recorded in the database may improve classification error rate.

The experiment described here is an update to similar experiment described by us in
(Sacha et al., 2000). The current experiment uses newer database, larger by about 200
cases, and the new family of the Bayesian network classifier described in Chapter 7.

The upper boundary of the classification noise that is present in the database can be
estimated by constructing a number of classifiers and measuring their error rate using cross
validation. We used a C4.5 classifier (Quinlan, 1993), thirteen of the classifiers described in
Chapter 7, and the constant classifiave used only records that had no missing, incorrect,
or multiple values for considered attributes. Three sets of attributes were used to estimate

classification error level:

e Diagnosis by a cardiologist for each of the 22 regions of interests (Figure 4.1). We
refer to this 22 attribute set a%de22. Each of the attributes can take on seven
values which describe defect type, codedias normal,F - fixed,R - reversiblep -
partially reversibleE - equivocal X - reverse redistributiomRT - artifact. This set

has 1762 cases.

e A new dataset was obtained frobode22 set by counting how many times each of
the defect codes were present within the 22 regions for a given case. These data
became a set of seven attributes taking on integer values from 0 to 22. Similarly to

the Code22 set, this set has 1762 cases. We refer to this data sztums.

o Still another set was created using criteria such as relevance, completeness, and cor-
rectness of attribute values. This resulted in 16 attributes with a reasonably high num-

ber of corresponding entries in titnde22 data set. The following variables were

1The constant classifiepredicts a constant class - the majority class in the training set. This is the
simplest classifier that can be build. It is used to establish a base performance level. If no classifier can reach
performance better then the constant classifier it suggests that a dataset does not contain any information

useful for classification; a dataset contains only noise.
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Table 8.1:Summary of the estimation of reference classification error level using ten-

fold cross validation. The first number represents an error in percent; the

second is the standard deviation of the sample mean.

. Discrete
Data set # attri- # Consjtgnt cas naive TAN Best new
butes |cases | classifier BNC
Bayes
Code22 22 1762 | 73.38+1.25|21.28 £1.04 | 20.94 +1.28 | 20.37+1.48 | 19.30+1.15
Count 7 1762 | 73.384+1.25[16.634+-0.72 | 18.05 £0.98 | 17.82+0.99 | 17.59 4+ 0.99
Extras 13 1619 | 73.4440.74 | 66.89 £ 0.94 | 60.72 £ 0.83 | 60.22+1.29 | 59.85+1.01
g%i?éé 35 1619 | 73.4440.74 | 22.54 £ 1.58 | 21.74 £ 1.09 | 20.45+0.92|19.64+0.77
Count &
Extras 20 1619 | 73.4440.74 | 18.78 £0.85 | 17.66 = 1.04 | 18.474+0.92|17.60+0.84
Code22
& Count 29 1762 | 73.38+1.25[17.544+0.90 | 19.69 = 1.23 | 18.22+1.12| 17.70 =+ 1.07
Code22
& Count 42 1619 | 73.444+0.74 | 18.563 £0.85|20.26 £0.98 | 17.91+0.91|17.66+0.87
& Extras

Table 8.2:Estimation of reference classification error level using ten-fold cross valida-

tion and FAN classifier.

Dataset FAN

atase HGC SB LC LOO CV1010
Code22 | 19.81 = 1.54] 19.64 = 1.24] 19.30  1.15] 19.58 + 1.23| 2034 = 1.13
Count 17.59 + 0.99| 17.93 + 1.04 17.76 = 1.04| 17.65+ 1.01| 17.70 = 1.01
Extras 60.53 + 1.27] 60.22 % 0.86| 60.47 + 0.95| 60.41 + 0.94] 60.41 + 0.94

Code22 & Extras| 20.57 + 0.86| 20.14 + 0.96| 20.38 = 1.01| 20.94 + 0.81| 21.19 + 0.88

Count & Extras | 18.10 + 1.06| 17.60 = 0.84| 17.60 + 0.98| 17.79 + 0.97| 17.66 = 0.97

Code22 & Count| 18.33 = 1.27| 17.93 = 1.23| 17.99 + 1.31| 17.76 + 1.27| 17.88 + 1.30

C"dgzéxf‘raio“”t 19.02 + 1.02| 18.40 + 0.80| 18.28 + 0.99| 17.85+ 0.85| 18.03 + 0.84

selected: sex, age, height, weight, body surface area coefficient (BSA), diabetes mel-
litus, family history, HTN, smoker/non-smoker, chest pain, high cholesterol, prior

MI, and left ventricular size. This set has 1619 cases. We refer tcEttass.

The first two sets contain only information from the interpretation of SPECT images. The
last one contains other attributes from patient records that might influence the diagnosis of
myocardial perfusion.

We used these sets of attributes and their combinations to build seven datade2,
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Table 8.3:Estimation of reference classification error level using ten-fold cross valida-

tion, STAN and STAND classifiers.

Dataset STAN STAND
HGC SB LC HGC SB LC

Code2? | 2202 1.15| 35.75 & 1.64] 22.64 « 1.12] 19.97 = 1.53] 43.02 + 1.14] 20.43 = 1.18
Count 17.82 + 0.99| 17.82 + 0.99] 17.82  0.99| 17.76 = 1.00| 17.76 = 1.00| 17.76 + 0.94
Extras 50.85+ 1.01| 60.96 + 1.21] 59.35 + 0.90| 61.70 + 0.96| 62.87 = 1.06] 59.97 = 1.13
Code22& Extras | 22.05 + 1.19] 26.13 + 1.42| 23.59 + 0.98] 19.64 % 0.77| 2477+ 1.01] 20.81 = 0.95
Count & Extras | 18.47 + 0.90| 19.09 = 1.26| 18.03 = 0.95| 17.91 + 1.05| 17.60 = 1.10] 18.16 + 1.13
Code22 & Count| 21.51 + 1.02| 25.42 = 0.98| 19.69 = 0.99| 18.05 + 1.08| 19.01 + 0.90| 17.70 = 1.07
mdzzéxf‘racso“”t 21.62 + 1.33| 26.19 + 1.40| 19.64 + 0.91| 17.66 % 0.87| 19.15+ 1.09] 18.44 + 0.92

Count, Extra, Code22 & Extra, Count & Extra, Code22 & Count, andCode22 & Count &

Extra. Then-fold cross validation has been used. The summary of the classification results
for these datasets is presented in Table 8.1. Results for selected new Bayesian network
classifiers (BNC) are presented in Tables 8.2 and 8.3. The first number is the mean cross-
validation classification error in percent, the second is the standard deviation of th& mean

The following conclusions can be drawn from Table 8.1:

e The data seem to have relatively high classification noise. The lowest classification

error in the table is above 16%.

e Representation of the regional classification codesCinent data set, seems to be

“easier” for learning.

e Additional attributes (Extras) contain some useful information for the classification.

The error rate for th&xtras data set is high, however it is over 13% lower than that

Experimental standard deviation of the mezfra samplery, . .., x4:

i &
o(z) = mZ@?—l’)

i=1
wherez = ; S | x; is the experimental mean of the sample. The standard deviation of the mean is not the

standard deviation of the sample. It shows how variable the mean is, which is smaller than the variability of

the sample itself by a factor of samples’ size, see (Rice, 1988).
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Figure 8.1:Classification error as a function of number of attributes used for classifica-

tion for dataseCount & Extras.

of the constant classifier, suggesting that some of the attributes iExtlzedata set

are correlated to the classification category.

¢ Classification using the extended data sets, i.e. regional information with added at-

tributes, suffers from increased classification error.

In our previous work, (Sacha et al., 2000), we studied the relation between number of
attributes selected for classification and the classification error. In particular, we studied
theCount & Extras dataset created from earlier version of database. That dataset contained
1,433 cases, only 11% less than the current one. The attributes were first ordered according
to their contribution to the classification goal based on analysis of classification rules gen-
erated by C4.5 classifier. As expected, attributes f@amt set ranked highest. We started
with a dataset that contained only one attribute, with the highest rank, and performed ten-

time cross validation test using C4.5 classifier. Then, we added the second attribute to the
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dataset and repeated the cross-validation test; and so on. The results are shown in Fig. 8.1.
These results agree with the one presented in Table 8.1: addition of extra attributes from
database that are not directly related to myocardial perfusion does not improve classifica-
tion results, and may actually increase the error. This is despite that Table 8.1 shows that
setExtras on its own contain information useful for classification. This is not a contradic-
tion. Larger number of attributes in the dataset means that a classifier needs to be described
by a larger number of parameters. As discussed in Chapter 7, if we keep the number of
cases in a training dataset constant and increase the number of parameters in a classifier,
the variance of estimation of the classifier parameters using that dataset increases. Each
of the parameters is estimated with a lower accuracy that may lead to a lower classifier
performance. There is usually some optimal tradeoff between the number of attributes in
the dataset and the classification error. This is well illustrated in Fig. 8.1. Around seven
attributes, for this particular dataset, seems to give the most optimal results. Based on these
results, in order to minimize parameter variance, we decided not to include attributes from

the Extras set in the remaining tests presented in this Chapter.

8.2 Partial Classification of Left Ventricular Perfusion

This section presents the core experimental results of this work. A partial classification
is performed in each of the twenty two 3D regions of interest (Section 4.1), for females
and males separately. We tested all of the Bayesian network classifiers presented in Chap-
ter 7. For reference, we also include classification results using the constant classifier, C4.5
classifier, and continuous version of théveaBayes classifier.

We had the following goals while conducting this experiment:

1. The main goal of this dissertation: how useful is Bayesian learning for classification

of inherently noisy cardiac SPECT images.

2. How do new Bayesian learning algorithms compare to other algorithms.
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3. Which new Bayesian network search algorithms perform best on average.
4. Which Bayesian network quality measure performs best on average.
5. Evaluate the quality of the datasets used for this experiment.

This is the largest study presented in this work and from the statistical point of view it is
best suited for drawing conclusions about performance of the new Bayesian learning meth-
ods. We use 44 datasets having 16 attributes each (one dataset for each of the 22 3D regions
of interest, for females and males separately). Then-fold cross validation is performed, and
29 classification algorithms are tested. Total of 12,760 individual classification tests have
been performed. The results are summarized in the tables presented on the following pages.

We show cross-validation result for each of the algorithms and each of the datasets.

8.2.1 Feature Extraction and Creation of Datasets

The features were extracted from 3D SPECT images using a technique described in Sec-
tion 4.4.3. We have used more than a single 2D slice for each of the five views (see Fig-
ure 4.1). This is to compensate for ambiguity of using exactly the same slice that may
have been used by an evaluating physician while recording perfusion codes. For each of
the short axis views we used three slices; search radius was set to 9 for females and 10 for
males. For the horizontal long axis view we used three slices; search radius was set to 11
for females and 12 for males. For the vertical long axis view we used two slices; search ra-
dius was set to 10 for females and 12 for males. Number of slices per view for females and
males was coincidentally the same, although it was not intentional. The number of slices
and radius of search has been determined by inspecting each of the normal left ventricle
models independently.
For each view in 3Dest andstress images, 2D MAX and TOT images were created

using cylindrical radial search, as described in Section 4.4.1. Each of the 2D images has

been normalized by dividing each pixel value by the largest pixel intensity found in the
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Table 8.4:Case counts for partial LV perfusion classification tests: Females.

Defect Codes

ROI Name NL F P R X A Total
SHORT_AXIS_AP_ANT 67 10 10 8 1 28] 124
SHORT_AXIS_AP_LAT 110 4 6 2 0 2| 124
SHORT_AXIS_AP_INF 106 12 2 2 0 2| 124
SHORT_AXIS_AP_SEPT 114 2 1 5 0 2| 124
SHORT_AXIS_MID_ANT 57 13 6 15 2 31| 124
SHORT_AXIS_MID_ANT_LAT 99 7 3 8 0 71 124
SHORT_AXIS_MID_INF_LAT 106 9 2 6 0 1 124
SHORT_AXIS_MID_INF 109 9 2 3 0 1 124
SHORT_AXIS_MID_ANT_SEPT 106 4 2 10 0 2| 124
SHORT_AXIS_BASAL_ANT 60 14 9 11 1 291 124
SHORT_AXIS_BASAL_ANT_LAT 107 6 2 4 0 4] 123
SHORT_AXIS_BASAL_INF_LAT 104 10 3 7 0 o] 124
SHORT_AXIS_BASAL_INF 103 11 3 3 1 2] 123
SHORT_AXIS_BASAL_ANT_SEPT 102 3 4 9 1 5| 124
HORIZ_LONG_SEPT 114 0 0 7 1 2| 124
HORIZ_LONG_APICAL 100 8 5 7 1 2] 123
HORIZ_LONG_LAT 103 6 4 7 1 3] 124
HORIZ_LONG_BASAL 113 5 2 4 0 0] 124
VERT_LONG_ANT 61 12 6 14 1 28] 122
VERT_LONG_APICAL 103 8 5 5 1 2| 124
VERT_LONG_INF 105 11 2 5 0 1 124
VERT_LONG_BASAL 109 10 1 3 1 0] 124

Total| 2158 174 80 145 12 154
79% 6% 3% 5% 0% 6%

corresponding 3D image. For each of the ROI, we extracted four features from 2D images:
maximum intensity in the region, mean intensity, median intensity, and standard deviation
of the intensity in the region. This gives a total of 16 features for each ROI. A separate
dataset has been created for each ROI; separate for males and females.

Tables 8.4 and 8.5 present case counts for females and males for each of the diagnosis
types (IL — normal,F — fixes defectP — partially reversible defecR — reversible defect,
X — defect showing reverse redistributiohn;- artifact). We used cases that had complete
cardiologist’s evaluation record for each of the 22 ROI. For males we used cases that had the
normal left ventricle model correlation match 0.95 or better (see Section 4.3); this resulted
in 170 patient cases. For females we used cases that had the normal left ventricle model

correlation match 0.93 or better; this resulted in 124 cases.
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Table 8.5:Case counts for partial LV perfusion classification tests: Males.

Defect Codes

ROI Name NL F P R X A Total
SHORT_AXIS_AP_ANT 137 10 8 11 1 3] 170
SHORT_AXIS_AP_LAT 147 8 7 7 1 o] 170
SHORT_AXIS_AP_INF 64 53 22 16 4 9] 168
SHORT_AXIS_AP_SEPT 154 6 4 5 0 1 170
SHORT_AXIS_MID_ANT 141 5 9 13 0 2| 170
SHORT_AXIS_MID_ANT_LAT 157 2 5 5 1 0] 170
SHORT_AXIS_MID_INF_LAT 104 23 20 12 2 8] 169
SHORT_AXIS_MID_INF 67 53 26 10 2 11 169
SHORT_AXIS_MID_ANT_SEPT 145 6 8 9 1 0] 169
SHORT_AXIS_BASAL_ANT 148 5 6 8 1 2| 170
SHORT_AXIS_BASAL_ANT_LAT 164 1 1 2 1 1 170
SHORT_AXIS_BASAL_INF_LAT 101 28 21 9 0 10| 169
SHORT_AXIS_BASAL_INF 62 50 27 13 2 15| 169
SHORT_AXIS_BASAL_ANT_SEPT 146 3 9 11 0 1 170
HORIZ_LONG_SEPT 139 5 9 15 1 0] 169
HORIZ_LONG_APICAL 111 31 7 19 1 1 170
HORIZ_LONG_LAT 143 11 10 4 2 o] 170
HORIZ_LONG_BASAL 151 11 10 4 2 0] 178
VERT_LONG_ANT 137 6 11 13 1 2] 170
VERT_LONG_APICAL 95 32 11 26 2 3] 169
VERT_LONG_INF 54 53 29 19 3 10] 168
VERT_LONG_BASAL 141 17 4 3 0 5| 170

Total| 2708 419 264 234 28 84
72% 11% 7% 6% 1% 2%

The last column in Tables 8.4 and 8.5 shows the total number of cases in each dataset.
This not always sums to 124 and 170, respectively, since there were some coding errors in
the databases that we were not able to resolve: there was more than a single code recorded
for particular ROI. We did not drop these cases completely since they had correct diagnosis
for other ROI and could be used for creation of other datasets.

The last two rows in Tables 8.4 and 8.5 show total number of times each defect was
present in 22 ROIs. Due to low number of cases and low relative count for defect types,
other than normal, we combined all the defect codes intcabnermal . Thus, each of the

datasets used for experiments had two clasgesjal andabnormal , and 16 attributes.
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8.2.2 Experiments

Experimental results are presented in Tables 8.6 to 8.11. We abbreviated names to narrow
the ROI Name column and fit more columns per page. Tables 8.6 presents results for
the reference classifiers and overall best result for the new Bayesian network classifiers.
Tables 8.7 to 8.11 present results for FAN, STAN, STAND, SFAN, and SFAND classifier,
respectively. The first number is the ten-fold cross validation error. The numbertafter
is the standard deviation of the mean. Numbers in bold indicate the lowest error rate in a
given table for a given dataset. Numbers with gray background indicate the smallest error
for a given dataset among all of the tested classifiers.

Bottom of each table shows two performance indicators for each of the classifiers: an
average error rate (lower is better) and an average advantage ratio (higher is better). The
advantage ratio compares performance of a classifier to the constant classifier; it will be

described in detail in the next section on page 122.
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Table 8.6:Ten-fold cross-validation error of the partial LV perfusion classification for

reference classifiers and summary for new Bayesian network classifiers.

Naive Best New

ROI Name Constant C4.5 Bayes TAN BNC
SHORT_AP_ANT 46.09 + 3.86| 37.69 £ 3.06| 33.65 £ 4.05] 31.99 + 4.03] 27.18 £ 3.32
SHORT_AP_LAT 11.45+ 2.84] 9.68+ 2.57| 1436+ 3.40] 11.99 + 3.56] 8.08 + 2.39
SHORT_AP_INF 14.42 + 3.05( 20.71 + 3.43| 1429+ 3.18] 15.06 + 3.91] 13.53 + 3.31
SHORT_AP_SEPT 8.01 £ 2.35| 7.18% 2.20] 9.68+ 2.30] 8.01+ 2.35] 8.01+ 2.35
SHORT_MID_ANT 46.03 £ 4.03| 36.35+ 3.96| 31.35+ 2.88] 32.24 + 3.55] 27.44 = 2.77
SHORT_MID_ANT_LAT 20.13 £ 3.42| 17.69 + 5.07| 20.19 + 3.83] 16.79 + 4.48] 15.19 = 4.89
SHORT_MID_INF_LAT 14.55+ 1.11{ 13.78 £ 2.42]| 15.96 + 2.55| 15.32 £+ 2.73] 12.12 + 1.78
SHORT_MID_INF 11.79 + 3.85] 11.09 £ 3.48] 8.72+ 2.95] 7.88+ 2.30] 6.28 + 1.93
SHORT_MID_ANT_SEPT 14.42 + 3.05| 12.76 £ 3.11] 14.62 + 2.45] 16.09 + 2.96] 11.35 % 1.85
® SHORT_BASAL_ANT 59.10 £ 4.04| 25.83 + 3.58] 31.92 £ 5.97] 28.59 + 6.00] 22.44 = 3.61
©|SHORT_BASAL_ANT_LAT 13.01 £ 2.53] 21.09 + 3.69]| 17.05 £ 3.42] 16.92 + 4.45] 10.51 = 2.11
qE)SHORT_BASAL_INF_LAT 16.22 + 1.80]| 21.03 + 3.40( 21.15+ 3.32] 18.65 £ 2.52] 16.22 + 1.80
L SHORT_BASAL_INF 16.28 = 2.11| 21.92 + 3.82( 22.05+ 3.74] 17.95+ 3.23] 17.12 + 2.88
SHORT_BASAL_ANT_SEPT | 17.76 £ 2.36| 26.79 + 5.54| 17.76 + 2.36] 17.76 £ 2.36] 17.76 £+ 2.36
HORIZ_LONG_SEPT 7.95+ 2.70] 5.58+ 2.08( 7.12+ 247] 5.58+ 1.74] 5.58 % 1.74
HORIZ_LONG_APICAL 18.46 + 3.86( 21.92 + 3.23| 25.13 + 2.70| 18.59 + 3.76] 15.45 + 2.57
HORIZ_LONG_LAT 16.86 + 3.24( 16.73 + 3.98]| 16.03 = 2.00| 16.03 + 3.42] 12.76 = 2.40
HORIZ_LONG_BASAL 8.85+2.59] 9.68+ 2.40[ 12.12+ 2.751 1045+ 1.71] 7.95+ 2.39
VERT_LONG_ANT 58.14 £ 2.02| 39.36 + 4.44| 31.86 + 4.07] 30.19 £ 4.15] 30.19 £+ 4.15
VERT_LONG_APICAL 16.86 + 2.81| 20.90 + 3.19| 21.73 £ 3.60] 17.63 + 2.87] 16.86 = 2.81
VERT_LONG_INF 15.13 £ 3.08| 21.54 = 3.82| 29.81 + 4.19] 15.90 + 3.18] 15.13 £ 3.08
VERT_LONG_BASAL 12.05 + 2.99] 19.29 + 4.58| 25.71 + 3.49] 12.05+ 2.99] 11.99 + 2.43
SHORT_AP_ANT 19.41 + 1.53( 26.47 + 2.36| 19.41 = 2.33| 17.65 + 2.32] 16.47 + 2.29
SHORT_AP_LAT 13.53 £ 2.33] 12.94 + 2.45] 12.94 + 2.11] 11.18 £ 2.23] 10.00 £ 1.97
SHORT_AP_INF 38.09 £+ 3.30] 39.96 + 3.51| 32.28 £ 2.44] 32.90 + 3.08] 28.68 = 3.32
SHORT_AP_SEPT 9.41 + 2.35( 12.94 + 1.92| 13.53 + 2.64| 10.59 + 1.47] 9.41 = 2.18
SHORT_MID_ANT 17.06 £ 2.05| 21.18 = 2.35[ 20.59 + 2.67] 20.59 + 2.67] 17.06 £ 2.05
SHORT_MID_ANT_LAT 7.56 £ 1.76 7.65+ 1.26| 824+ 1.57| 7.65% 1.76] 7.65% 1.76
SHORT_MID_INF_LAT 38.38 + 4.26( 38.38 + 2.58| 33.09 £ 3.26] 33.05 + 3.25] 29.52 + 2.99
SHORT_MID_INF 39.74 £ 4.51) 41.32 £ 4.32| 27.17 £ 4.46] 25.99 = 4.38] 25.92 = 5.04
SHORT_MID_ANT_SEPT 14.23 + 2.53| 17.76 + 3.04| 21.88 = 3.03] 14.82 £ 2.54] 14.23 + 2.53
SHORT_BASAL_ANT 12.94 + 2.75| 14.12 £ 2.66| 17.06 + 2.97] 12.94 + 2.75] 12.35 %+ 2.55
% SHORT_BASAL_ANT_LAT 3.53+ 096 4.12+ 1.26] 3.53+ 0.96] 3.53% 0.96] 3.53 % 0.96
=|SHORT_BASAL_INF_LAT 40.18 £ 4.75| 33.68 + 4.17| 33.09 = 2.89] 31.91 + 3.02] 30.74 = 3.56
SHORT_BASAL_INF 36.65 + 4.16{ 37.83 £ 4.00| 31.36 + 3.16] 28.90 + 4.39] 27.72 £ 3.00
SHORT_BASAL_ANT SEPT | 14.12 £ 2.51| 17.65 + 2.63| 18.82 + 3.70] 14.12 £ 2.51] 14.12 = 2.51
HORIZ_LONG_SEPT 17.79 + 2.81( 13.57 + 3.03| 17.13 + 2.82] 12.46 + 2.26] 12.39 + 2.83
HORIZ_LONG_APICAL 34.71 + 3.87| 28.24 + 3.49| 25.88 + 3.19] 23.53 + 3.82] 21.18 £ 2.66
HORIZ_LONG_LAT 15.88 + 3.17| 18.82 + 2.88| 14.12 + 3.53] 14.12 £ 3.19] 11.76 £ 2.63
HORIZ_LONG_BASAL 11.18 £ 2.05| 13.53 £ 2.49] 941+ 2.51] 882+ 2.19] 824+ 2.18
VERT_LONG_ANT 19.41 = 2.33( 22.35+ 2.29( 20.00 = 2.51] 20.00 = 2.51| 19.41 + 2.33
VERT_LONG_APICAL 43.75+ 3.59| 44.93 + 1.89| 39.60 + 3.78] 41.40 + 2.27] 36.07 = 3.52
VERT_LONG_INF 32.10 £ 3.26[ 35.74 £ 3.19( 32.10 + 3.26] 32.10 = 3.26] 32.10 = 3.26
VERT_LONG_BASAL 17.06 + 3.09] 16.47 + 3.49] 15.88 + 3.17] 15.88 + 3.17] 14.71 £ 3.07

Average error 21.82 21.78 20.67 18.54 17.55

Average advantage 0.00 -7.85 -6.82 7.51 11.98




Table 8.7:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-
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sification using FAN classifier.

FAN
ROI Name HGC SB LC LOO CV1010
SHORT_AP_ANT 31.99 + 4.03| 31.99 + 4.03| 32.82 + 4.15] 31.99 + 4.03] 31.99 + 4.03
SHORT_AP_LAT 12.76 £ 3.90| 11.99 £ 3.56| 12.82 + 3.34] 11.99 £ 3.56] 11.99 £ 3.56
SHORT_AP_INF 14.36 + 3.03[ 15.96 + 3.06| 15.96 + 3.06] 14.29 + 3.45] 14.29 =+ 3.45
SHORT_AP_SEPT 8.01 £ 2.35 9.68+ 2.30| 8.01% 2.35] 8.01+ 2.35] 8.01z% 2.35
SHORT_MID_ANT 32.24 + 3.55| 31.41 £ 2.67| 32.24 £ 3.55] 32.24 + 3.55] 32.24 + 3.55
SHORT_MID_ANT_LAT 16.86 + 3.63| 16.79 + 4.48] 16.03 + 3.73] 16.86 = 3.63] 16.86 = 3.63
SHORT_MID_INF_LAT 15.32 + 2.73]| 14.49 + 2.77| 14.49 + 2.81] 15.26 + 3.36] 14.49 £ 2.81
SHORT_MID_INF 7.95+ 2.34| 8.72+ 2.71| 8.65+ 3.16] 8.59+ 3.70] 8.59 + 3.70
SHORT_MID_ANT_SEPT 15.32 + 3.07| 13.72 + 2.43]| 1442 £+ 3.05] 15.32 £ 3.07] 12.88 + 2.13
® SHORT_BASAL_ANT 28.59 £+ 6.00[ 28.59 + 6.00| 28.65 + 4.87] 29.42 + 5.74] 28.65 + 4.87
©[SHORT_BASAL_ANT _LAT 16.92 + 4.45( 14.55 £ 4.07| 16.09 = 4.54] 16.09 £ 4.54] 16.09 + 4.54
qE)SHORT_BASAL_INF_LAT 18.65 + 2.52| 18.65 = 2.52( 21.15+ 2.90] 18.65 =+ 2.52| 18.65 = 2.52
L SHORT_BASAL_INF 17.95 + 3.23| 17.95+ 3.23| 17.95+ 3.23] 17.95+ 3.23]| 17.95 + 3.23
SHORT_BASAL_ANT_SEPT | 17.76 + 2.36| 17.76 £ 2.36| 17.76 + 2.36] 17.76 + 2.36] 17.76 £ 2.36
HORIZ_LONG_SEPT 6.35+ 2.000 7.12+ 247 7.12+ 247 635+ 2.00] 6.35+% 2.00
HORIZ_LONG_APICAL 17.82 + 3.56| 19.55+ 2.51| 19.55+ 2.80] 17.88 + 3.42] 18.72 + 3.26
HORIZ_LONG_LAT 16.79 = 2.98| 15.90 + 3.25( 15.96 £ 3.50] 16.86 = 3.31] 16.86 = 3.31
HORIZ_LONG_BASAL 10.45+ 1.71{ 10.51 + 2.45) 11.28 = 1.80] 9.68 + 2.05] 9.68 = 1.64
VERT_LONG_ANT 30.19 = 4.15| 31.03 + 4.30( 30.19 = 4.15] 30.19 = 4.15] 30.19 = 4.15
VERT_LONG_APICAL 17.63 £ 2.87| 19.17 + 3.53| 21.67 £ 3.56] 19.17 + 3.53] 19.17 + 3.53
VERT_LONG_INF 15.90 + 3.18| 15.90 + 3.18| 16.67 + 3.45] 15.13 + 3.08| 15.13 + 3.08
VERT_LONG_BASAL 12.05+ 2.99( 13.72+ 3.21| 14.55+ 291| 13.72 + 3.21] 13.72+ 3.21
SHORT_AP_ANT 17.06 £ 2.05| 17.65 + 2.32 17.65 + 2.32] 18.24 + 2.39] 18.24 + 2.39
SHORT_AP_LAT 11.18 + 2.23| 11.76 £ 1.52| 11.18 + 2.23] 11.18 + 2.23| 11.18 + 2.23
SHORT_AP_INF 33.49 + 2.80] 30.48 £ 2.59| 33.49 £ 2.51] 33.49 + 3.30] 33.49 + 3.30
SHORT_AP_SEPT 10.59 = 1.47( 10.59 + 1.47( 10.59 + 1.92] 10.59 + 1.47| 10.59 + 1.47
SHORT_MID_ANT 20.59 + 2.67| 20.00 £ 2.35( 18.82 + 2.11] 20.00 = 2.51] 20.00 + 2.51
SHORT_MID_ANT_LAT 7.65+ 1.76| 824+ 1.57 7.65+ 1.76] 7.65% 1.76] 7.65% 1.76
SHORT_MID_INF_LAT 33.05 £+ 3.25] 32.46 + 3.49| 33.05 £ 3.25] 33.05+ 3.25] 33.05+ 3.25
SHORT_MID_INF 25.99 + 4.38] 25.92 + 5.04| 25.99 + 4.38] 25.99 + 4.38] 25.99 + 4.38
SHORT_MID_ANT_SEPT 14.82 + 2.54( 14.82 = 2.54( 15.37 + 2.65| 14.82 + 2.54| 14.82 + 2.54
SHORT_BASAL_ANT 14.12 = 2.66( 14.12 + 2.66( 14.12 + 2.66] 14.12 = 2.66| 14.12 + 2.66
% SHORT_BASAL_ANT_LAT 3.53+ 0.96] 3.53+ 0.96[ 3.53% 0.96] 3.53+ 0.96] 3.53+ 0.96
=|SHORT_BASAL_INF_LAT 31.32 + 3.25| 3191 +£ 3.27( 31.91 + 2.89] 31.91 + 3.02] 31.91 + 3.02
SHORT_BASAL_INF 29.49 + 4.17( 27.83 £ 3.06| 30.66 £ 3.33] 27.72 £ 3.00] 27.72 = 3.00
SHORT_BASAL_ANT_SEPT | 16.47 £ 3.26| 17.65 + 3.51| 17.65 + 3.51] 16.47 £ 3.26] 16.47 £ 3.26
HORIZ_LONG_SEPT 12.46 £ 2.26| 13.01 = 2.45( 13.01 + 2.28] 13.01 + 2.28] 13.01 + 2.28
HORIZ_LONG_APICAL 23.53 + 3.82| 23.53 + 3.82( 24.12 + 4.15] 24.12 + 4.15] 24.12 + 4.15
HORIZ_LONG_LAT 12.94 + 3.14| 12.35 £ 3.09| 13.53 + 3.29] 13.53 £+ 3.04] 13.53 + 3.04
HORIZ_LONG_BASAL 882+ 2.19( 8.82+2.19( 8.82+ 2.19| 8.82+ 2.19] 8.82+ 2.19
VERT_LONG_ANT 20.00 = 2.51| 20.00 = 2.51| 20.00 = 2.51] 20.00 = 2.51] 20.00 = 2.51
VERT_LONG_APICAL 39.60 = 3.23| 39.60 = 3.23| 39.60 = 3.23] 39.60 = 3.23] 39.60 = 3.67
VERT_LONG_INF 32.10 + 3.26| 32.10 £ 3.26( 32.10 + 3.26] 32.10 + 3.26] 32.10 + 3.26
VERT_LONG_BASAL 15.88 + 3.17] 15.88 + 3.17 15.88 + 3.17] 15.88 + 3.17] 15.88 + 3.17
Average error 18.56 18.58 18.93 18.62 18.55
Average advantage 7.05 6.14 469 6.81 7.24




Table 8.8:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-
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sification using STAN classifier.

STAN
ROI Name HGC SB LC LOO CV1010
SHORT_AP_ANT 31.22 + 5.26( 34.36 + 5.32| 28.01 £ 3.59] 31.22 + 3.52] 29.55+ 3.97
SHORT_AP_LAT 11.41 + 3.09| 10.45 % 2.45| 12.05+ 2.13] 10.58 £ 2.10} 12.12 £ 2.75
SHORT_AP_INF 13.65 + 3.32| 14.42 + 3.05( 14.49 + 2.61] 1526 £ 2.75] 15.19 = 2.96
SHORT_AP_SEPT 8.01 £ 2.35| 8.01+ 2.35| 8.01+ 2.35] 8.01+ 2.35| 8.01+ 2.35
SHORT_MID_ANT 30.58 + 3.48( 27.44 + 2.77| 31.41 £ 3.71] 31.35+ 4.03] 31.35+ 4.03
SHORT_MID_ANT_LAT 17.69 + 3.89] 20.90 £ 4.04]| 15.96 + 4.82] 15.96 =+ 5.08] 15.96 + 5.08
SHORT_MID_INF_LAT 12.95+ 1.35] 13.72 £ 1.69] 13.78 £ 2.42] 12.88 + 2.07] 12.88 + 2.07
SHORT_MID_INF 9.36 £ 3.76[ 859+ 3.70] 7.05% 2.43] 7.82+ 2.57] 7.82+ 2.57
SHORT_MID_ANT_SEPT 11.35+ 1.85| 11.35+ 2.23( 11.35+ 2.23] 13.01 £ 3.12] 11.35+ 2.23
® SHORT_BASAL_ANT 27.88 + 4.24] 31.28 £ 4.55( 22.56 + 3.71] 23.33 + 3.44| 23.33 + 3.44
©|SHORT_BASAL_ANT_LAT 13.85+ 1.77] 11.41 + 1.84| 14.55+ 3.46] 13.85+ 2.79] 14.55+ 2.83
qE) SHORT_BASAL_INF_LAT 16.22 + 1.80| 16.22 + 1.80( 18.65 + 2.52] 18.65 £ 2.52] 17.88 + 2.49
L SHORT_BASAL_INF 19.55 + 2.18] 18.78 + 2.80| 17.18 + 3.39] 17.12 + 2.88] 17.12 + 2.88
SHORT_BASAL_ANT_SEPT | 17.76 £ 2.36| 17.76 £ 2.36| 17.76 £ 2.36] 17.76 = 2.36] 17.76 £ 2.36
HORIZ_LONG_SEPT 6.35+ 2.00] 6.35+2.00] 5.58+ 1.74] 5.58+ 1.74] 5.58+ 1.74
HORIZ_LONG_APICAL 17.76 = 3.08( 19.23 + 3.86( 18.59 + 3.33] 17.76 + 3.45| 17.82 + 3.10
HORIZ_LONG_LAT 15.19 + 2.14] 14.36 £ 2.56| 15.19 £ 3.03] 15.96 = 3.34] 16.79 = 2.98
HORIZ_LONG_BASAL 9.62+ 2.67| 8.78+ 1.85| 8.78+ 2.83] 7.95+ 2.39] 7.95+ 2.39
VERT_LONG_ANT 31.79 £ 3.97| 31.79 + 3.71| 36.92 + 3.58] 36.03 £ 3.78] 32.69 + 3.56
VERT_LONG_APICAL 16.86 + 2.81| 17.63 + 2.87| 16.86 + 2.81] 17.63 + 2.87] 17.63 + 2.87
VERT_LONG_INF 15.13 = 3.08( 15.13 + 3.08( 15.13 + 3.08] 15.13 + 3.08] 15.13 + 3.08
VERT_LONG_BASAL 12.05+ 2.99] 12.05+ 2.99] 12.82+ 2.09]1 11.99 + 2.43] 11.99 £ 2.43
SHORT_AP_ANT 17.06 = 2.05( 17.06 = 2.05| 17.65+ 1.96] 18.24 + 2.23] 18.24 + 2.23
SHORT_AP_LAT 11.18 + 2.83] 10.59+ 1.92] 11.18 + 1.63] 11.76 + 1.52] 11.76 £ 1.52
SHORT_AP_INF 33.97 4+ 1.39( 3342+ 2.21| 31.62 £ 2.29] 35.29 + 3.15] 34.12 + 3.47
SHORT_AP_SEPT 11.18 £ 2.55] 10.00 £ 2.16] 10.00 £ 2.33] 9.41 £ 2.51] 10.00 £+ 2.49
SHORT_MID_ANT 17.65 £ 1.75] 17.06 £ 2.05]| 20.59 £ 2.94] 21.18 £ 2.66] 21.18 £ 2.66
SHORT_MID_ANT_LAT 7.65+ 1.76] 7.65+ 1.76] 7.65% 1.76] 7.65+ 1.53] 7.65+% 1.53
SHORT_MID_INF_LAT 34.23 + 4.14] 31.84 + 3.37| 36.65 £ 2.84] 35.44 + 2.24] 34.96 + 2.78
SHORT_MID_INF 27.87 + 3.68| 28.42 + 3.27| 27.24 + 4.59] 27.79 + 3.61] 27.17 + 3.71
SHORT_MID_ANT_SEPT 14.23 + 2.53| 14.23 + 2.53( 14.23 + 2.53] 14.23 + 2.53] 14.23 + 2.53
SHORT_BASAL_ANT 12.35+ 2.55]| 1294 + 2.75( 12.94 + 2.75] 14.12 £ 2.66] 14.12 + 2.66
% SHORT_BASAL_ANT_LAT 3.53+ 096 3.53+ 0.96] 3.53+ 0.96] 3.53% 0.96] 3.53+ 0.96
=|SHORT_BASAL_INF_LAT 32.50 £ 3.39( 33.68 + 2.99| 31.91 + 3.38] 33.09 + 3.70] 33.68 + 3.58
SHORT_BASAL_INF 28.90 = 3.93| 33.09 + 3.26| 30.66 = 4.15] 29.49 + 3.89] 30.66 = 4.51
SHORT_BASAL_ANT SEPT | 14.12 £ 2.51| 14.12 £ 2.51| 14.12 £ 2.51] 15.29 £ 2.93] 1529+ 2.93
HORIZ_LONG_SEPT 13.60 = 2.63| 15.37 £ 2.65| 12.39 + 2.83] 14.19 + 3.30] 14.15+ 3.18
HORIZ_LONG_APICAL 24.71 = 3.59| 24.12 + 3.33| 23.53 + 3.28]| 24.12 + 3.22| 25.29 + 3.40
HORIZ_LONG_LAT 15.29 + 3.19| 12.35+ 2.70| 14.12 + 2.18] 12.35+ 1.85] 13.53 + 2.78
HORIZ_LONG_BASAL 824+ 2.18 941+ 1.80| 941+ 1.80] 8.82+ 2.52] 8.82+ 2.52
VERT_LONG_ANT 19.41 + 2.33| 19.41 + 2.33( 19.41 + 2.33] 19.41 £ 2.33] 19.41 + 2.33
VERT_LONG_APICAL 36.07 £ 3.52| 38.42 + 4.00| 39.56 =+ 3.21] 40.15 + 3.05] 40.74 + 3.13
VERT_LONG_INF 32.10 + 3.26| 32.10 + 3.26| 32.10 = 3.26] 32.10 + 3.26] 32.10 * 3.26
VERT_LONG_BASAL 15.29 + 3.19] 15.29 + 3.19] 14.71 £ 3.07] 15.29 + 3.19] 15.88 + 3.51
Average error 18.12 18.27 18.13 18.36 18.34
Average advantage 10.14 10.37 10.30 9.77 9.35




Table 8.9:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-
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sification using STAND classifier.

STAND
ROI Name HGC SB LC LOO CV1010
SHORT_AP_ANT 31.99 + 4.03| 27.18 £ 3.93| 32.12 4+ 3.11] 28.01 + 3.37] 29.68 + 3.38
SHORT_AP_LAT 11.99 + 3.56| 11.99 £ 3.56] 9.62+ 2.00] 8.08+ 2.39] 8.08 £ 2.39
SHORT_AP_INF 13.53 + 3.31| 14.42 + 3.05 1596 + 2.55] 16.79 + 3.36] 16.79 + 3.16
SHORT_AP_SEPT 8.01 £ 2.35| 8.01+ 2.35| 8.01+ 2.35] 8.01+ 2.35| 8.01+ 2.35
SHORT_MID_ANT 31.41 + 3.40( 29.68 + 4.07| 33.78 £ 2.99] 31.47 + 2.53] 32.95+ 3.12
SHORT_MID_ANT_LAT 16.03 = 3.73] 16.03 £ 3.73]| 15.96 £ 5.08] 19.29 + 5.31] 17.63 £ 4.67
SHORT_MID_INF_LAT 15.32 £ 2.73] 15.26 + 3.36] 13.78 + 2.42] 13.72 + 2.39] 12.95 + 2.45
SHORT_MID_INF 9.42 + 323 8.59+ 3.13] 7.12+ 247) 7.05+ 2.92] 7.05+% 2.92
SHORT_MID_ANT_SEPT 15.32+ 3.07| 11.35+ 2.23| 11.35+ 2.23] 14.49 + 3.35] 12.05 £ 2.68
© SHORT_BASAL_ANT 27.82 + 5.80] 22.50 + 3.71| 23.27 + 3.56] 24.04 = 3.99| 23.27 + 3.56
©|SHORT_BASAL_ANT _LAT 16.92 + 5.25| 13.01 £ 2.53| 14.68 £ 2.43] 1545+ 2.57] 16.22 £ 2.92
qE) SHORT_BASAL_INF_LAT 17.82 + 2.08| 16.22 + 1.80]| 18.65+ 2.52] 18.65+ 2.52] 18.65 £ 2.52
L SHORT_BASAL_INF 17.95 + 3.23| 17.82 + 3.02| 17.12 + 2.88] 17.12 + 2.88] 17.12 + 2.88
SHORT_BASAL_ANT_SEPT | 17.76 £ 2.36| 17.76 £ 2.36| 17.76 £ 2.36] 17.76 = 2.36] 17.76 £ 2.36
HORIZ_LONG_SEPT 5.58+ 1.74] 635+ 2.00] 5.58+ 1.74] 5.58+ 1.74] 5.58+ 1.74
HORIZ_LONG_APICAL 18.72 £ 2.70( 18.72 + 2.70| 15.45 % 2.57| 18.65 + 2.92] 19.42 + 4.01
HORIZ_LONG_LAT 16.03 £ 3.42| 14.29 + 2.73| 1526 £ 2.54] 15.19 £ 2.43] 15.19+ 2.43
HORIZ_LONG_BASAL 10.45+ 2.12 8.85+ 2.59| 8.78+ 2.83] 9.62 + 2.67] 9.62 + 2.67
VERT_LONG_ANT 31.03 £+ 4.12| 30.32 + 3.89| 31.03 £ 3.70] 31.09 = 4.00] 30.26 + 4.22
VERT_LONG_APICAL 17.63 + 2.87( 16.86 + 2.81| 16.86 + 2.81] 17.63 + 2.87] 17.63 + 2.87
VERT_LONG_INF 15.90 + 3.18( 15.13 + 3.08| 15.13 = 3.08| 15.13 + 3.08] 15.13 = 3.08
VERT_LONG_BASAL 12.82 + 2.73] 12.05+ 2.99]| 12.05+ 2.99] 12.05 % 2.99] 12.05 %+ 2.99
SHORT_AP_ANT 17.65 + 2.32| 17.65+ 2.32| 18.24 + 2.05] 17.65 + 2.32| 17.65 + 2.32
SHORT_AP_LAT 11.18 + 2.23| 11.18+ 2.23| 11.76 + 1.75] 12.94 + 2.11] 12.35+ 2.23
SHORT_AP_INF 31.73 £ 3.20( 28.68 + 3.32| 34.67 £ 2.72| 37.68 + 3.24] 37.06 = 2.90
SHORT_AP_SEPT 10.59 + 1.47] 9.41 + 2.35| 10.59+ 2.45] 11.18 £ 2.97] 11.18 £ 2.97
SHORT_MID_ANT 20.00 + 2.93| 17.06 = 2.05( 20.59 + 2.94] 20.00 = 2.66] 20.59 + 2.36
SHORT_MID_ANT_LAT 824+ 1.57| 7.65+ 1.76| 824+ 1.57] 7.65+ 1.53] 7.65+ 1.53
SHORT_MID_INF_LAT 33.05 + 3.25] 29.52 £ 2.99| 32.46 £ 3.49] 34.26 + 2.38] 34.26 + 2.96
SHORT_MID_INF 25.99 + 4.11| 25.99 + 4.11| 28.97 + 3.85] 28.35 + 3.87| 28.38 + 4.26
SHORT_MID_ANT_SEPT 14.82 + 2.54| 14.23 £ 2.53| 14.23 £ 2.53]| 14.23 + 2.53] 14.23 £ 2.53
SHORT_BASAL_ANT 12.94 + 2.75]| 12.94 + 2.75( 12.94 + 2.75] 12.94 £ 2.75] 12.94 + 2.75
% SHORT_BASAL_ANT _LAT 3.53+ 096 3.53+ 0.96] 3.53+ 0.96] 3.53+ 0.96] 3.53+ 0.96
=|SHORT_BASAL_INF_LAT 31.91 + 3.02( 31.91 + 2.89| 30.74 £ 3.56] 31.91 + 3.71] 32.50 + 3.39
SHORT_BASAL_INF 28.31 + 4.84| 31.88 + 3.48| 30.66 + 4.51] 30.07 = 3.29] 30.66 + 3.09
SHORT_BASAL_ANT_SEPT | 14.12 + 2.51| 14.12 + 2.51| 14.12 + 2.51| 14.12 £ 2.51| 14.12 + 2.51
HORIZ_LONG_SEPT 12.98 + 2.59| 12.98 + 2.27( 12.98 + 3.25] 12.39 + 2.96] 12.98 + 2.87
HORIZ_LONG_APICAL 23.53 + 3.82| 22.94 + 3.45( 22.94 + 4.25] 22.94 + 3.33] 22.35+ 3.80
HORIZ_LONG_LAT 14.12+ 2.35| 14.12 + 3.19| 13.53 £ 2.78] 14.12 + 3.06] 13.53 + 3.29
HORIZ_LONG_BASAL 8.8+ 2.19] 8.82+ 2.19( 8.82+ 2.01] 8.82+ 2.01] 8.82+ 2.01
VERT_LONG_ANT 19.41 + 2.33| 19.41 + 2.33( 19.41 + 2.33] 19.41 £ 2.33] 19.41 + 2.33
VERT_LONG_APICAL 40.18 £ 3.75| 38.42 =+ 4.10| 39.56 + 3.33] 40.74 + 3.37| 40.74 + 3.37
VERT_LONG_INF 32.10 + 3.26| 32.10 £ 3.26| 32.10 + 3.26] 32.10 =+ 3.26] 32.10 = 3.26
VERT_LONG_BASAL 15.88 + 3.17| 15.29 + 3.19] 15.29 + 3.19] 15.29 + 3.19] 15.88 + 3.51
Average error 18.42 17.55 18.08 18.35 18.32
Average advantage 7.73 11.98 10.57 897 9.30




Table 8.10:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-
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sification using SFAN classifier.

SFAN
ROI Name HGC SB LC LOO CV1010
SHORT_AP_ANT 32.88 + 4.68] 29.49 + 4.85| 28.78 + 3.70] 28.85 + 3.15] 28.85+ 3.15
SHORT_AP_LAT 11.41 = 3.09] 8.91+ 2.54| 11.28 + 3.40] 10.51 = 3.19] 10.51 £ 2.93
SHORT_AP_INF 17.56 £ 3.21] 15.13 £ 3.11| 16.79 + 2.67| 14.36 £+ 3.03]| 15.13 £ 3.54
SHORT_AP_SEPT 8.01 £ 2.35| 8.01+ 2.35| 8.01+ 2.35] 8.01+ 2.35| 8.01+ 2.35
SHORT_MID_ANT 30.58 + 3.48( 29.04 + 2.80| 32.24 + 2.66] 33.08 + 3.67] 33.27 + 3.69
SHORT_MID_ANT_LAT 17.69 = 3.89] 20.90 + 4.04| 16.73 + 5.00] 15.96 + 5.08] 15.19 + 4.89
SHORT_MID_INF_LAT 12.12 + 1.78 15.26 + 2.94| 16.15 + 1.26] 14.49 + 2.56] 14.49 + 2.56
SHORT_MID_INF 8.59+ 3.70| 7.82+ 3.04| 872+ 295] 8.59+ 3.70] 9.42 + 3.79
SHORT_MID_ANT_SEPT 11.35+ 1.85]| 12.18 + 2.26( 11.35+ 2.23] 13.85+ 2.83] 11.35+ 2.23
® SHORT_BASAL_ANT 27.88 + 4.24| 31.22+ 5.11| 24.04 + 4.36] 23.27 + 3.97] 22.44 + 3.61
©|SHORT_BASAL_ANT_LAT 14.68 + 1.68]| 10.51 + 2.11| 13.72 + 4.11] 13.78 £ 2.91] 1545 + 3.04
qE) SHORT_BASAL_INF_LAT 17.88 + 2.49| 16.22 + 1.80| 18.65+ 2.52] 18.65+ 2.52] 17.88 £ 2.49
L SHORT_BASAL_INF 19.62 + 2.56| 18.78 + 3.30| 17.88 + 2.70] 17.12 + 2.88] 17.12 + 2.88
SHORT_BASAL_ANT_SEPT | 17.76 £ 2.36| 17.76 £ 2.36| 17.76 £ 2.36] 17.76 = 2.36] 17.76 £ 2.36
HORIZ_LONG_SEPT 6.35+ 2.001] 6.35+2.00] 7.12+ 247] 5.58+ 1.74] 5.58+ 1.74
HORIZ_LONG_APICAL 17.95+ 2.41] 17.88 + 3.18] 17.05 + 3.08] 16.15 + 3.12] 17.82 + 3.10
HORIZ_LONG_LAT 15.19 + 2.14| 12.82 £ 2.43] 12.76 £ 2.40] 15.96 + 2.55]} 17.63 £ 3.26
HORIZ_LONG_BASAL 9.62+ 2.67[ 8.78+ 1.85| 8.78+ 2.22] 9.55+ 1.95] 9.55+ 1.95
VERT_LONG_ANT 31.79 + 3.97| 31.86+ 3.22| 31.86 + 3.64] 33.65 + 3.82| 33.46 + 4.32
VERT_LONG_APICAL 17.63 £ 2.87| 19.36 + 3.07| 17.63 + 2.87] 21.67 + 3.56] 21.67 £ 3.56
VERT_LONG_INF 15.13 = 3.08( 15.13 + 3.08( 15.13 + 3.08] 15.13 + 3.08] 15.13 + 3.08
VERT_LONG_BASAL 13.72 £ 321 12.05% 2.99| 1429+ 3.41] 13.72+ 3211 13.72+ 3.21
SHORT_AP_ANT 16.47 £ 2.29( 17.65 + 2.15( 1824 + 2.05] 17.65 + 2.32| 17.65 + 2.32
SHORT_AP_LAT 11.18 £ 2.83] 10.00 £ 1.97) 11.76 £ 1.52] 1235+ 2.23] 11.18 + 1.85
SHORT_AP_INF 33.97 + 1.39( 31.65 %+ 2.70| 33.49 + 3.18] 34.71 = 3.06] 34.08 + 2.77
SHORT_AP_SEPT 11.76 +£ 2.32| 11.18 £ 1.63| 9.41 + 2.18] 10.59 + 2.29] 10.59 + 2.29
SHORT_MID_ANT 17.65 = 1.75| 17.65 + 1.75| 20.59 + 2.67] 21.18 + 2.18] 21.76 + 2.33
SHORT_MID_ANT_LAT 7.65+ 1.76] 7.65+ 1.76| 7.65+ 1.76] 7.65+ 1.53] 7.65+ 1.53
SHORT_MID_INF_LAT 34.23 + 4.14| 31.84 + 3.37| 33.64 £ 3.35] 34.82 £ 3.03| 33.64 + 2.71
SHORT_MID_INF 27.87 + 3.68| 27.83 + 3.94| 29.01 + 4.43] 27.72 + 3.99| 27.72 + 3.99
SHORT_MID_ANT_SEPT 14.23 + 2.53| 14.82 + 2.54( 14.23 + 2.53] 14.23 + 2.53] 14.23 + 2.53
SHORT_BASAL_ANT 12.35+ 2.55]| 1294 + 2.75( 12.94 + 2.75] 14.12 £ 2.66] 14.12 + 2.66
% SHORT_BASAL_ANT _LAT 3.53+ 0.96[ 3.53+ 0.96] 3.53+ 0.96] 3.53+ 0.96] 3.53+ 0.96
=|SHORT_BASAL_INF_LAT 31.91 £+ 3.60| 32.50 + 3.27| 32.50 + 2.90] 33.68 + 3.47| 33.75 + 4.04
SHORT_BASAL_INF 29.49 + 3.89| 30.66 + 4.06( 31.88 + 3.13] 30.66 + 3.21| 30.66 + 3.44
SHORT_BASAL_ANT _SEPT | 14.12 £ 2.51| 14.12 £ 2.51| 15.29 + 2.93] 16.47 + 3.26] 16.47 £ 3.26
HORIZ_LONG_SEPT 13.60 £ 2.63]| 15.33 £ 2.92] 12.39 + 3.21] 14.78 £ 3.19] 14.74 + 3.18
HORIZ_LONG_APICAL 24,12 + 3.22]| 24.12 + 2.83| 23.53 £ 3.40] 24.12 + 3.66] 24.12 + 3.22
HORIZ_LONG_LAT 14.12 + 3.06| 13.53 + 2.49| 13.53 + 3.17] 14.12+ 2.80] 14.12 £+ 3.06
HORIZ_LONG_BASAL 8.24+ 2.18] 941+ 1.80] 941+ 1.80] 8.82+ 2.52] 8.82+ 2.52
VERT_LONG_ANT 19.41 + 2.33| 19.41 + 2.33( 19.41 + 2.33] 19.41 £ 2.33] 19.41 + 2.33
VERT_LONG_APICAL 36.07 £ 3.52| 38.42 + 4.00| 38.97 + 3.88] 38.38 + 3.68] 36.07 = 3.52
VERT_LONG_INF 32.10 + 3.26| 32.10 £ 3.26| 32.10 + 3.26] 32.10 =+ 3.26] 32.10 = 3.26
VERT_LONG_BASAL 15.29 + 3.19| 15.29 + 3.19( 15.29 + 3.19] 15.29 + 3.19] 15.88 + 3.51
Average error 18.29 18.12 18.31 18.55 18.49
Average advantage 9.02 10.56 8.80 7.68 7.57




Table 8.11:Ten-fold cross-validation error rate of the partial left ventricle perfusion clas-
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sification using SFAND classifier.

SFAND
ROI Name HGC SB LC LOO CV1010
SHORT_AP_ANT 31.99 + 4.03] 29.49 + 4.98| 28.85 + 3.15| 27.18 £ 3.32] 29.62 + 3.49
SHORT_AP_LAT 12.76 £ 3.90 11.99 + 3.56| 12.12+ 2.75| 8.08 + 2.39] 8.08 + 2.39
SHORT_AP_INF 14.36 £ 3.03| 14.42 + 3.05| 16.03 + 2.86] 17.50 = 3.76] 16.73 = 3.53
SHORT_AP_SEPT 8.01 + 2.35( 8.01+ 2.35| 8.01% 2.35] 8.01+ 2.35] 8.01% 2.35
SHORT_MID_ANT 31.41 + 3.40( 30.77 £ 3.28| 34.62 + 3.06] 31.47 £ 2.53] 33.08 + 2.83
SHORT_MID_ANT_LAT 16.03 + 3.73[ 16.03 + 3.73| 15.96 + 5.08] 18.53 + 4.87) 17.63 + 4.67
SHORT_MID_INF_LAT 14.49 + 2.77( 14.42 £ 3.19| 16.03 £+ 3.04] 14.49 + 3.03] 14.49 = 3.03
SHORT_MID_INF 8.59+ 3.70| 872+ 2.71| 7.88+ 3.28] 6.28+ 1.93] 8.59+ 3.70
SHORT_MID_ANT_SEPT 15.32 + 3.07| 12.18 £ 2.26| 12.88 + 2.95] 14.55 £ 3.59] 12.88 + 2.95
© SHORT_BASAL_ANT 27.82 £ 5.80( 24.17 + 3.36| 24.10 = 3.55| 24.81 + 3.87] 24.81 + 3.87
G (SHORT_BASAL_ANT _LAT 16.09 + 4.36( 13.01 £ 2.53| 14.68 =+ 2.43| 15.45 + 3.35] 15.38+ 3.71
qE)SHORT_BASAL_INF_LAT 18.65 + 2.52( 16.22 + 1.80| 18.65 + 2.52] 18.65 £ 2.52] 18.65+ 2.52
M- lSHORT_BASAL_INF 17.95+ 3.23( 17.82 + 3.02| 17.88 + 2.93] 17.12 + 2.88] 17.12 + 2.88
SHORT_BASAL_ANT_SEPT | 17.76 + 2.36| 17.76 £ 2.36| 17.76 + 2.36] 17.76 + 2.36] 17.76 £ 2.36
HORIZ_LONG_SEPT 5.58+ 1.74 635+ 2.00] 6.35+ 2.00] 5.58+ 1.74] 5.58+ 1.74
HORIZ_LONG_APICAL 18.72 £ 2.70( 18.78 + 2.50| 20.13 + 3.51| 17.88 £ 2.65] 17.95 + 2.41
HORIZ_LONG_LAT 16.79 + 3.67( 14.29 £ 2.73| 14.42 + 2.91] 14.36 + 2.80] 14.36 + 2.80
HORIZ_LONG_BASAL 10.45+ 2.12| 8.85+ 2.59( 8.01+ 2.10] 10.38 = 1.65] 10.45 =+ 1.71
VERT_LONG_ANT 31.03 + 4.12| 31.86 + 3.67| 31.09 = 4.00] 33.53 £+ 4.07] 31.92 + 3.95
VERT_LONG_APICAL 17.63 + 2.87( 16.86 + 2.81| 17.63 = 2.87] 20.90 + 3.23] 20.90 + 3.23
VERT_LONG_INF 15.90 + 3.18| 15.13 + 3.08| 15.13 + 3.08] 15.13 + 3.08| 15.13 + 3.08
VERT_LONG_BASAL 12.82 + 2.73[ 12.05 % 2.99| 12.76 + 3.32] 14.49 + 3.54] 15.38 + 2.83
SHORT_AP_ANT 17.06 £ 1.85| 17.65 + 2.32 18.24 + 2.05] 17.65 + 2.32] 17.65 + 2.32
SHORT_AP_LAT 11.18 £ 2.23| 11.76 = 1.52 11.18 £ 2.23] 11.76 + 2.15] 11.18 £ 2.23
SHORT_AP_INF 32.90 + 3.20( 31.07 £ 2.52| 32.94 + 3.73] 34.74 £ 3.39] 34.71 + 2.95
SHORT_AP_SEPT 10.59 + 1.47( 9.41+ 2.35| 10.59+ 2.45] 11.76 £ 291] 11.76 + 2.32
SHORT_MID_ANT 20.00 + 2.80( 17.06 £ 2.05| 20.59 = 2.67] 21.18 = 2.18] 21.76 + 2.33
SHORT_MID_ANT_LAT 824+ 1.57| 7.65+ 1.76] 824+ 1.57] 7.65+ 1.53] 7.65+ 1.53
SHORT_MID_INF_LAT 32.46 + 3.49( 29.52 + 2.99| 32.46 + 3.49] 34.85 £ 2.77] 34.26 + 2.96
SHORT_MID_INF 25.99 + 4.11] 25.99 + 4.11| 29.01 + 4.92] 27.79 + 3.81] 28.38 + 4.44
SHORT_MID_ANT_SEPT 14.82 + 2.54( 14.23 £ 2.53| 14.23 + 2.53| 14.23 + 2.53] 14.23 + 2.53
SHORT_BASAL_ANT 14.12 + 2.66( 12.94 £ 2.75| 12.94 + 2.75] 14.12 £ 2.66] 14.12 + 2.66
% SHORT_BASAL_ANT _LAT 3.53+ 0.96] 3.53+ 0.96[ 3.53% 0.96] 3.53+ 0.96] 3.53+ 0.96
=|SHORT_BASAL_INF_LAT 31.32 + 3.25| 31.32 + 3.25| 33.09 + 3.49] 33.71 + 3.38] 33.68 + 3.47
SHORT_BASAL_INF 28.90 + 4.56| 31.91 £ 3.91| 29.49 + 3.89] 30.07 + 4.03] 30.66 + 3.86
SHORT_BASAL_ANT SEPT | 14.12 + 2.51| 14.12 + 2.51| 15.29 + 2.93] 16.47 + 3.26] 16.47 £ 3.26
HORIZ_LONG_SEPT 12.98 + 2.59| 12.39 + 3.21 12.39 + 3.21| 12.39 + 2.96] 12.98 = 2.87
HORIZ_LONG_APICAL 23.53 + 3.82| 21.18 £ 2.66| 22.94 + 4.06] 24.71 = 3.37] 24.71 + 3.01
HORIZ_LONG_LAT 12.94 + 3.14| 11.76 £ 2.63| 13.53 + 3.04] 13.53 £ 3.29] 12.94 + 3.14
HORIZ_LONG_BASAL 8.8+ 2.19] 8.82+2.19] 8.82+ 2.01] 8.82+ 2.01|] 8.82= 2.01
VERT_LONG_ANT 19.41 £ 2.33| 19.41 = 2.33( 19.41 £ 2.33] 19.41 + 2.33] 19.41 £ 2.33
VERT_LONG_APICAL 39.60 = 3.11| 38.42 + 4.10| 38.38 + 3.68] 38.97 + 3.78] 38.97 + 3.78
VERT_LONG_INF 32.10 + 3.26| 32.10 £ 3.26( 32.10 + 3.26] 32.10 + 3.26] 32.10 + 3.26
VERT_LONG_BASAL 15.88 + 3.17{ 15.29 + 3.19] 15.29 + 3.19] 15.29 + 3.19] 15.88 + 3.51
Average error 18.42 17.65 18.31 18.56 18.64
Average advantage 7.69 11.97 8.66 7.44 7.08
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8.2.3 Discussion of Results
Usefulness of new Bayesian Classifiers for Interpretation of SPECT Data

As demonstrated in Table 8.6, 42 out of 44 times the new Bayesian classifiers were better
than or equal to any of the reference classifiers. This has not been intended to be an exhaus-
tive study of existing classification approaches, since only three other nontrivial classifiers
were tested (C4.5, inge Bayes, and TAN). However, it shows that the new Bayesian classi-
fiers perform well on the SPECT data. Especially, that they outperformed well known C4.5
classifier.

We have selected the STAND-SB classifier, as a representative of the new Bayesian
network classifiers, and compared it to the four reference classifiers: constant, @Qv¥e5, na
Bayes, and TAN. The diagrams showing the comparison are presented in Fig. 8.2. Axis in
each diagram represent percentage error rate. The pink diagonal line represents equal of
error for the two compared classifiers. A blue mark represents a dataset. When a blue mark
is above the line it means that a classifier compared to STAND-SB had a larger error for
that dataset. When a mark is below the diagonal pink line it means that STAND-SB had
a larger error. Diagrams in Fig. 8.2 demonstrate that STAND-SB outperforms all of the

reference classifiers.

Performance of Network Search Algorithms

We ranked performance of the new Bayesian network search algorithms by counting how
many times each algorithm had the lowest error among all classifiers (the number of cells
with gray background in Tables 8.7 through 8.11). The ranking is presented in Table 8.12.
STAN algorithm received the highest rating, FAN the lowest by a significant margin. Other

three algorithms performed close to each other and not much worse than STAN.
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Figure 8.2:Comparison of STAND-SB inducer versus constant classifier, C4i%gna

Bayes, and TAN inducers on partial LV perfusion classification data.
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Table 8.12:Partial classification: ranking of Bayesian network classifier search algo-

rithms.

| | FAN | STAN [ STAND | SFAN | SFAND |
HGC 5 14 7 14 6
SB 4 12 16 10 16
LC 5 13 12 11 7
LOO 7 11 10 8 12

Cv10101| 7 11 10 12 9

| total | 28 | 61 | 55 [ 55 | 50 |

Table 8.13:Partial classification: ranking of Bayesian network quality measures.

| | HSC | sB | LC | LOO |CV1010|
FAN 27 23 18 24 27
STAN 20 21 21 17 16
STAND | 15 30 22 19 22
SFAN 21 21 18 14 15
SFAND | 14 30 16 17 13

[ total | 97 [ 125 | 92 [ 91 | 93 |

Performance of Network Quality Measures

We ranked performance of the network structure quality measures by counting how many
times each measure produced lowest error for a given algorithm and a given dataset. The
ranking is presented in Table 8.13. The SB measure ranked highest. The remaining mea-
sures ranked similar to each other, with the HGC slightly better than others.

It is a bit surprising the SB ranked highest since it is a global measure. However, this
is the only measure that includes penalty for the network size, thus limiting number of

parameters in the network.

Overall Performance of the New Bayesian Network Classifiers

We have used the following three indicators to compare the new family of Bayesian network

classifiers to the reference classifiers (the constant classifier, CA/& Bayes, and TAN):

Dataset error rate indicates for how many datasets the error rate of the best new Bayesian
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Table 8.14:Comparison of the new family of Bayesian network classifiers to reference
classifier (the constant classifier, C4.5jweaBayes, and TAN) using the
partial left ventricle perfusion datasets datasets. A number indicates how
many times a best of the new classifiers was better, equal, or worse than a
best of reference classifiers.

Indicator Better Equal Worse
Dataset error rate 28 64%| 14 32%| 2 4%
Average error rate 17 68%| 0 0% | 8 32%

Average advantage ratio 18 75%| 0 0% | 7 25%

network classifier was better (lower), equal to, or worse (higher) than that of the best

reference classifier for a given dataset.

Average error rate indicates how many of the new Bayesian network classifiers had av-
erage error rate that is better (lower), equal to, or worse (higher) than that of the best

(lowest) average error rate of the reference classifiers.

Average advantage ratio indicates how many of the new Bayesian network classifiers had
average advantage ratio, Eq.( 8.1), that is better (higher), equal to, or worse (lower)

than that of the best (highest) average advantage ratio of the reference classifiers.

The indicators are shown in Table 8.14. This table clearly demonstrates that the new
family of Bayesian network algorithms produces classifiers that are performing better, on

the partial left ventricle perfusion datasets, than the reference classifiers.

Quality of the Datasets with Features Extracted from SPECT Images

By a quality of a datasetve understand here the amount of information in the dataset that
can be utilized by a classifier to perform classification with low error. In an extreme case
a dataset may contain only the class variable (no attribute variables). The only reasonable
way to make a decision in this case is to create a classifier that will always predict the
class that is the most frequent in the training dataset. This is the same as constructing the

constant classifier — it always predicts the majority class, regardless of values of attributes.
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Table 8.15:Partial classification: ranking of dataset quality.

Rank Dataset Advantage | | pank Dataset Advantage
ratio ratio
1 F_SHORT_AXIS_BASAL_ANT 62% 23 |F_SHORT_AXIS_MID_INF_LAT 17%
2 |F_VERT_LONG_ANT 48% 24 |F_HORIZ_LONG_APICAL 16%
3 |F_SHORT_AXIS_MID_INF 47% 25 |M_SHORT_AXIS_AP_ANT 15%
4 |F_SHORT_AXIS_AP_ANT 41% 26 |M_VERT_LONG_BASAL 14%
5 |F_SHORT_AXIS_MID_ANT 40% 27 |F_SHORT_AXIS_AP_SEPT 10%
6 [M_HORIZ_LONG_APICAL 39% 27 |F_HORIZ_LONG_BASAL 10%
7  [M_SHORT_AXIS_MID_INF 35% 29 |F_SHORT_AXIS_AP_INF 6%
8 [M_HORIZ_LONG_SEPT 30% 30 |M_SHORT_AXIS_BASAL_ANT 5%
9 |F_HORIZ_LONG_SEPT 30% 31 |F_VERT_LONG_BASAL 1%
10 [F_SHORT_AXIS_AP_LAT 29% 32 |F_SHORT_AXIS_BASAL_ANT_SEPT 0%
11 |M_HORIZ_LONG_BASAL 26% 32 |M_SHORT_AXIS_BASAL_ANT_LAT 0%
12 |M_SHORT_AXIS_AP_LAT 26% 32 |[M_SHORT_AXIS_BASAL_ANT_SEPT 0%
12 |M_HORIZ_LONG_LAT 26% 32 |M_SHORT_AXIS_MID_ANT_SEPT 0%
14 |M_SHORT_AXIS_AP_INF 25% 32 |M_VERT_LONG_INF 0%
14 |F_SHORT_AXIS_MID_ANT_LAT 25% 32 |F_SHORT_AXIS_BASAL_INF_LAT 0%
16 [M_SHORT_AXIS_BASAL_INF 24% 32 |F_VERT_LONG_INF 0%
16 |F_HORIZ_LONG_LAT 24%, 32 |M_SHORT_AXIS_MID_ANT 0%
16 |M_SHORT_AXIS_BASAL_INF_LAT 24% 32 |F_VERT_LONG_APICAL 0%
19 |M_SHORT_AXIS_MID_INF_LAT 23% 32 |M_VERT_LONG_ANT 0%
20 [F_SHORT_AXIS_MID_ANT_SEPT 21% 32 |M_SHORT_AXIS_AP_SEPT 0%
21 F_SHORT_AXIS_BASAL_ANT_LAT 19% 43 |M_SHORT_AXIS_MID_ANT_LAT -1%
22 |M_VERT_LONG_APICAL 18% 44 |F_SHORT_AXIS_BASAL_INF -5%
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Figure 8.3:Quality of the partial left ventricle classification datasets: comparison of the

the constant classifier to a best nontrivial classifier tested.
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The constant classifier behaves as if there is no useful information in the attribute variables
— dataset contains only noise. Thus we use the constant classifier error rate as a reference
error rate for other classifiers.

If we can build a classifier that produces error rate significantly lower for a given dataset
than the constant classifier, we can judge that this dataset has good quality. For a perfect
dataset we should be able to build a classifier that has error rate close to zero, regardless of
the error rate of the constant classifier. We are proposing the folloadagntage ratido

rank datasets:

advantage ratio = Eeonst T Ebest 1009, (8.1)

Econst

wheree,..s;: 1S the error rate of the constant classifier for a given datasets;ands the

error rate of a best classifier we were able to build for that dataset. The advantage ratio
defined by Eq. (8.1) reaches valueloh% if we can build a classifier with error rate equal

to zero; it equal9% if the error rate of our best classifier is the same as the constant
classifier; and it is negative if our best classifier produces error rate higher than the constant
classifier.

Table 8.15 shows ranking of datasets sorted in order of decreasing advantage ratio. We
calculated the advantage ratio using ten-fold cross-validation results presented in Table 8.6.
We can say that datasets with advantage ratio close or less than zero are of low quality. A
direct comparison of the classification error of the constant classifier versus a best classifier
for given dataset is presented in Fig. 8.3.

We can see from Table 8.15 that there is a significant variability in quality of the
datasets. Datas€tSHORT-AXIS-BASAL-ANT has the highest advantage ratio indicating
that it contains most useful information contributing to the classification goal, but its best
error rate 0f22.44% is still quite high. On the other hand, the datageSHORT-AXIS-
BASAL-ANT-LAT had the lowest error rate &.53% among all datasets, but it had the
advantage ratio equal zero indicating that it does not contain information useful for clas-

sification. Table 8.5 shows that this dataset contains no more than two examples for each
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of the defect types. From statistical point of view, this is not sufficient for adequate repre-
sentation of these defects in the dataset, even if these defects were combined into a single
category.

There are three main factors determining the quality of a dataset. First, the number
of cases in the dataset — if it is sufficient to represent the information about the underlying
phenomenon (perfusion of the left ventricle in our case). Second, noise in coding the values
of a class variable, which we estimated in Section 8.1. Third, the information coding
scheme for attributes; in our case, the feature extraction process described in Chapter 4.
The advantage ratio is only able to judge these factors cumulatively. But we can combine
it with information presented in Tables 8.4, 8.5, and 8.6. Our overall conclusion is that the
results of partial classification look very promising, but a database containing significantly

larger number of cases is needed before better results can be achieved.

8.3 Overall Classification of the Left Ventricle Perfusion

In the experiment described in the previous section partial classification of the left ventric-
ular perfusion was performed, classifying each of the 22 3D ROIls separately. The goal of
the experiment described in this section is to determine feasibility of performing an over-
all classification of the perfusion of the left ventricle. We use the same feature extraction
process as described in Section 8.2; however, we create different datasets. We selected
cases that had a single overall perfusion code recorded in the database, see Table 3.1. Ad-
ditionally, we used only defect types that have at least five cases representing them. And,
as before, we used only these cases that have sufficiently high left ventricle model fit cor-
relation ratio (0.95 for males, and 0.93 for females). Count for the cases satisfying these
criteria is presented in Table 8.16.

The difficulty we faced is that we had a low number of cases and a large number of

attributes. As described in Section 8.2, 16 features were extracted for each of the 22 3D
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Table 8.16:Case counts for overall LV perfusion classification tests.

_ Classes
Sex # attributes | # cases NL IS INF IS-IN
36 16 14 8
Female 44 74 49% 209, 19% 1%
23 20 30 45
Male 44 118 19% 17% 25% 38%

ROI resulting in 352 attributes available for the overall classification. This is larger than
number of available cases. If we were to use all of the features we could expect very high
variance in estimation of classifier parameters. We decided to use only one feature for
each ROI inrest andstress images resulting in 44 attributes. We decided to use features
based on maximum, mean, and median of pixel values in a 3D region. We used either
MAX or TOT radial search image. Thus we had six feature typsX-Max, MAX-Mean,
MAX-Median, TOT-Max, TOT-Mean, andTOT-Median. We created one dataset for each six
feature types, for females and males separately, resulting in 12 datasets. Each dataset had
four classesNL — normal,IS — ischemiaJNF — infarct, andS-IN — ischemia-infarct.

Ten-fold cross validation has been performed using reference classifiers (the constant
classifier, C4.5, riae Bayes, and TAN), and all of the 25 new Bayesian network classifiers.
The results are presented in Tables 8.17 through 8.22. As before, a number in bold indicates
the lowest error for a given dataset in a particular table. Numbers with gray background
indicate lowest error rate among all classifiers tested for a given dataset.

The summary of the results is presented in Table 8.17. The best feature type, for both
females and males, is the median of pixel intensity taken ffomimages. Two surprising

observations can be concluded from Table 8.17:

1. The error rate and the advantage ratio is better for females than for males, despite the
female sample is smaller and we would expect that given large number of attributes
the variance of classifier parameters will be high. However, the male sample is also

small compared to number of attributes. Distribution of classes in the male sample,
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see Table 8.16, is more uniform. In the female sample dltisappears in almost

half of the cases making it an easier concept to learn.

2. The error rate for females is surprisingly low — we will explain shortly. At first the
absolute value of the error may look large, however, the absolute value is deceiving.
The error rate in the golden standard, estimated in Section 8.1, is about 17%. The
average error rate of partial classification of the left ventricle perfusion is about 18%
(see Table 8.6). If we build a hierarchical classifier that first performs partial classifi-
cation, then uses these results to perform overall classifiéatien estimated error
rate of such a classifier will be the sum of the partial classification error rate and the
error level of the golden standard (the error rate of the best classifier that performs
overall classification using partial classification codes). This is about 35%. The error
rate for direct overall left ventricle perfusion classification ushi@y-Max approach
is 38.75% =+ 6.06%. Within the margin of error, these two approaches, hierarchical

and direct usingOT-Max, produce the same error rate.

To summarize above, we can say that we are positively surprised by the error rate
shown in Table 8.17. The available sample of patient cases was very small. And we expect
that direct classification approach could give good error rate given larger sample of patient

cases.

3Such a hierarchical classifier can be build by using in the lower level the 22 classifiers constructed in
Section 8.6 One classifier for each of the 22 ROIs. And using in the upper level the best classifier constructed
in Section 8.1, that issues the overall diagnosis of the left ventricle perfusion based on partial diagnosis in

each of the 22 ROls.
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Table 8.17:Ten-fold cross-validation error rate of the overall left ventricle perfusion
classification using reference classifiers and the best results for the new
Bayesian network classifiers. The last column shows value of the advantage

ratio of the best classifier for a given dataset (higher is better).

Sex

Adv.
Ratio

Best New
BNC

Constant
Classifier

Feature
Type

Image

T C4.5

Naive Bayes TAN

Female

0.00
0.00
0.00
0.02
0.18

0.24

59.46 £2.78
53.93 £5.07
61.96 £5.41
55.71 £4.51
43.57+£3.71

48.21 +4.24

4.39
5.01
5.29
3.24
544

4.65

51.07 + 4.39
57.86 = 5.01
59.11+ 5.29
49.82 + 3.63
41.79 £ 4.46

38.75+ 6.06

51.07 + 4.39
51.07 £+ 4.39
51.07 + 4.39
51.07 + 4.39
51.07 + 4.39

51.07 + 4.39

51.07 £
57.86 £
59.11 +
53.75 +
43.04 £

41.61 £

4.39
5.01
5.29
4.43
4.51

4.73

51.07 =
57.86 +
59.11 +
5375+
48.57 +

40.36 £

Max
Mean
Median
Max
Mean
Median

MAX

TOT

Male

5.38
2.68
3.17
3.21
4.31
3.23

0.04
0.11
0.12
0.00
0.11
0.07

69.62 £4.84
64.55+3.14
66.21 £4.39
74.47 £3.69
57.58 £3.13
71.89 £2.96

62.80 £
61.06 £
58.56 £
66.29 +
61.06 +
62.80 £

5.09
3.26
3.95
4.61
343
3.46

62.80 +
60.23 +
56.74 +
63.64 +
55.30 +
61.97 +

59.47 + 5.57
55.15+ 5.14
54.17 £ 3.63
62.73 + 3.05
55.98 + 4.20
57.73 £ 3.60

Max
Mean
Median
Max
Mean
Median

61.82+ 3.15
61.82+ 3.15
61.82 + 3.15
61.82 + 3.15
61.82+ 3.15
61.82 + 3.15

MAX

TOT

Table 8.18:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using FAN classifier.

FAN
Sex Image | Feature

Type | Type HGC SB LC LOO CV1010
Max [ 51.07 £ 4.39( 51.07 + 4.39( 51.07 £ 4.39( 51.07 £ 4.39( 51.07 £ 4.39
o | MAX | Mean |57.86 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86  5.01
‘_é’ Median | 59.11 + 5.29| 59.11 + 5.29| 59.11 + 5.29| 59.11 + 5.29| 59.11 + 5.29
0 Max | 52.32 4 4.00( 53.75 + 4.43]| 53.75 + 4.43| 53.75+ 4.43| 53.75+ 4.43
TOT | Mean | 43.04 + 4.10( 43.04 + 4.51| 41.79 = 4.46| 41.79 £ 4.46| 43.04 + 4.51
Median [ 41.61 + 5.19] 43.04 + 4.98] 41.61 = 4.90| 40.18 = 4.90| 40.18 + 4.90
Max | 62.88 + 5.92( 62.80 + 5.09| 62.80 + 5.92| 62.05 = 5.92| 62.05 = 5.92
MAX | Mean | 60.30 + 3.60| 60.38 + 4.37( 60.30 = 2.68| 60.23 + 2.68| 60.23 + 2.68
% Median | 55.98 + 4.20] 58.41 + 2.69| 56.74 + 3.63| 54.17 £ 3.63| 55.98 + 4.20
= Max | 63.64 + 3.21| 62.73 + 3.05| 65.45 + 3.83| 64.47 + 3.83| 66.21 = 4.76
TOT | Mean | 56.14 + 4.28| 61.89 + 3.68| 59.32 + 3.44| 58.64 + 3.44| 58.48 + 3.12
Median | 61.97 + 3.67| 62.80 + 3.46| 61.14 + 3.67| 61.97 + 3.67| 61.97 + 3.67




Table 8.19:Ten-fold cross-validation error rate of the overall left ventricle perfusion
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classification using STAN classifier.

STAN
Sex Image | Feature

Type | Type HGC SB LC LOO CVv1010
Max | 51.07 £ 4.39( 51.07 £ 4.39( 51.07 £ 4.39( 51.07 £ 4.39( 51.07 £ 4.39
o | MAX | Mean |57.86% 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01
(_E“ Median | 59.11 + 5.29] 59.11 + 5.29| 59.11 = 5.29| 59.11 = 5.29| 59.11 = 5.29
K Max | 53.75+ 4.01| 56.61 = 4.56( 49.82 + 3.63| 50.89 + 4.19( 50.89 + 4.19
TOT | Mean | 44.46 + 5.50| 45.71 + 4.68| 45.71 + 4.79| 46.07 + 5.07| 46.25 + 5.97
Median | 38.75 + 6.06] 47.14 + 4.80]| 44.46 = 4.97] 40.54 + 4.26| 41.79 + 3.92
Max | 59.47 = 5.57| 60.30 + 5.33[ 61.14 + 5.64| 60.30 £ 3.15| 61.97 = 5.52
MAX | Mean | 60.83 + 3.13[ 58.48 + 3.12| 58.64 + 4.25| 57.58 + 2.82( 60.15 + 2.80
2 Median | 67.73 + 3.30] 63.48 + 2.89| 57.65 + 3.46| 57.58 + 3.33[ 57.58 + 3.33
= Max | 68.79 + 4.12( 65.38 + 4.50( 67.05 + 4.16| 65.38 + 2.81| 65.38 = 2.81
TOT | Mean | 55.98 + 4.20| 57.05 + 3.63| 56.74 + 3.83| 60.45 + 4.33| 59.39 + 3.17
Median | 58.64 + 4.25| 58.64 + 3.87| 60.23 + 3.86| 60.23 + 3.20[ 60.23 + 4.05

Table 8.20:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using STAND classifier.

STAND
Sex Image | Feature

Type | Type HGC SB LC LOO Ccv1010
Max | 51.07 £ 4.39( 51.07 = 4.39| 51.07 = 4.39| 51.07 = 4.39| 51.07 + 4.39
o | MAX | Mean |57.86% 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01
(_EU Median | 59.11 £ 5.29| 59.11 £ 5.29| 59.11 + 5.29| 59.11 = 5.29| 59.11 + 5.29
K Max | 51.07 + 3.36| 53.75 + 5.35| 51.07 + 3.36| 50.89 + 4.19| 52.14 + 4.73
TOT | Mean | 50.00 + 5.46| 47.32 + 4.88| 43.21 £ 5.18| 45.89 + 6.12| 47.32 + 5.83
Median | 38.93 + 4.28] 41.79 + 5.38] 44.29 + 4.99| 44.29 + 4.99( 44.29 + 4.99
Max | 61.14 + 5.64( 61.97 = 5.52| 61.14 + 5.64| 60.30 = 4.88| 59.47 + 4.98
MAX [ Mean | 60.30 + 4.38| 60.98 + 2.86| 58.64 + 3.21| 59.39 + 2.58| 58.56 + 5.14
< Median | 59.32 + 3.67] 60.15 + 2.18| 56.82 + 4.50]| 56.89 + 3.03| 55.98 + 3.24
= Max | 67.05+ 4.16( 64.47 £ 3.16| 67.05 + 4.16| 67.05 + 4.68| 66.21 + 3.67
TOT | Mean | 57.80 + 3.76| 58.64 + 4.06| 58.41 + 3.45[ 58.56 + 3.31| 58.48 + 2.86
Median | 57.73 = 3.60| 57.73 £ 4.00] 60.23 + 2.95| 60.23 + 3.86| 59.39 + 3.36




Table 8.21:Ten-fold cross-validation error rate of the overall left ventricle perfusion
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classification using SFAN classifier.

SFAN
Sex Image | Feature

Type | Type HGC SB LC LOO CVv1010
Max | 51.07 £ 4.39( 51.07 £ 4.39( 51.07 £ 4.39( 51.07 £ 4.39( 51.07 £ 4.39
o | MAX | Mean |57.86% 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01
(_E“ Median | 59.11 + 5.29] 59.11 + 5.29| 59.11 + 5.29| 59.11 = 5.29| 59.11 = 5.29
K Max | 53.57 + 4.12| 53.93 + 4.33| 51.07 + 3.36| 53.75 + 4.43| 53.75+ 4.43
TOT | Mean | 43.04% 5.09| 44.46 + 5.50| 43.21 + 5.18( 45.71 + 5.47| 45.54 + 4.95
Median [ 44.46 + 4.97]| 45.71 £ 5.14]| 42.86 = 4.66| 43.21 + 4.22| 41.79 + 4.46
Max | 59.47 = 5.57| 60.30 + 5.33[ 61.82 + 3.15| 61.21 + 3.42| 62.80 = 4.61
MAX | Mean | 57.58 + 2.87| 56.67 + 3.31| 55.15+ 1.56| 59.47 + 3.31| 59.47 + 3.31
2 Median | 65.30 + 3.84] 63.48 + 2.89| 59.32 + 3.31| 56.74 + 3.63[ 56.74 + 3.63
= Max | 67.80 + 3.46( 65.23 + 3.40[ 65.38 + 3.31| 64.55+ 2.89| 64.55 + 2.89
TOT | Mean | 57.80 + 4.51| 56.14 + 4.79| 58.71 = 3.82| 57.80 + 3.33| 57.80 + 3.33
Median | 58.64 + 4.25| 58.64 + 3.87| 59.39 + 3.79| 62.73 + 4.12| 63.56 + 4.47

Table 8.22:Ten-fold cross-validation error rate of the overall left ventricle perfusion

classification using SFAND classifier.

SFAND
Sex Image | Feature

Type | Type HGC SB LC LOO Ccv1010
Max | 51.07 £ 4.39( 51.07 = 4.39| 51.07 = 4.39| 51.07 = 4.39| 51.07 + 4.39
o | MAX | Mean |57.86% 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01| 57.86 + 5.01
(_EU Median | 59.11 £ 5.29| 59.11 £ 5.29| 59.11 + 5.29| 59.11 = 5.29| 59.11 + 5.29
K Max | 53.57 + 4.12[ 53.93 + 4.33| 51.07 £ 3.36| 53.75 = 4.43| 53.75+ 4.43
TOT | Mean | 46.07 + 5.30| 49.82 + 5.30| 43.21 = 5.18| 44.64 + 5.58| 45.71 + 5.47
Median | 44.46 + 5.18] 44.29 + 4.62| 43.04 = 3.97| 43.21 + 5.18| 43.21 + 4.72
Max | 60.98 + 2.86( 61.14 + 5.50( 61.82 + 3.15| 62.05+ 3.21| 62.05 + 3.21
MAX | Mean | 60.30 = 4.38] 60.38 + 4.37| 56.89 = 2.06| 60.45 + 4.15[ 59.62 + 5.00
% Median | 58.41 + 2.69| 58.41 + 2.69| 57.65 + 4.61| 56.67 + 4.50( 55.08 + 3.27
= Max | 66.14 + 4.45( 62.73 £ 3.05| 65.38 + 3.31| 63.64 + 2.38| 63.64 + 2.38
TOT Mean | 58.64 + 3.87| 58.41 = 4.06| 59.39 + 1.89| 58.64 + 2.96| 58.71 + 3.62
Median | 57.73 = 3.60| 57.73 + 4.00| 61.82 + 2.62| 61.89 + 3.73[ 61.89 + 3.73
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8.4 Benchmarking on Datasets from UCI Machine Learn-
ing Repository

The goal of this experiment is to benchmark the new Bayesian network classifiers against
the results published by Friedman et al. (1997) in their work on TAN and other Bayesian
network classifiers. We already established that new Bayesian network classifiers are well
suited for analysis of cardiac SPECT data. In this experiment, we want to determine how
our new Bayesian network classifier algorithms perform on datasets from variety of do-

mains and how they compare to previous research. We use here the same datasets and

Table 8.23:UCI Machine Learning Repository datasets used for testing.

Dataset # Attributes # Classes #. Cases
Train  Test
australian 14 2 690 CV-5
breast 10 2 683 CV-5
chess 36 2 2,130 1,066
cleve 13 2 296 CV-5
corral 6 2 128 CV-5
crx 15 2 653 CV-5
diabetes 8 2 768 CV-5
flare 10 2 1,066 CV-5
german 20 2 1,000 CV-5
glass 9 7 214 CV-5
glass?2 9 2 163 CV-5
heart 13 2 270 CV-5
hepatitis 19 2 80 CV-5
iris 4 3 150 CV-5
letter 16 26 15,000 5,000
lymphography 18 4 148 CV-5
mofn-3-7-10 10 2 300 1,024
pima 8 2 768 CV-5
satimage 36 6 4,435 2,000
segment 19 7 1,540 770
shuttle-small 9 7 3,866 1,934
soybean-large 35 19 562 CV-5
vehicle 18 4 846 CV-5
vote 16 2 435 CV-5
waveform-21 21 3 300 4,700
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the same testing methods as published by Friedman et al. (1997). Table 8.23 presents the
datasets used for testing, number of attributes, number of classes, and number of cases in
each dataset. Friedman et al. (1997) used five-times cross validation (CV-5) for smaller
datasets and a single test for larger datasets. To ensure objectivity of comparison, we used
classification error data published by Friedman et al. (1997) rather than those that could be

produced by our version of the TAN classifier.

8.4.1 The Datasets

Here is a brief description of the datasets used for benchmarking; more information can be

found in (Blake et al., 1998).

australian Australian credit approval data.
breast Breast cancer databases from the University of Wisconsin Hospitals, Madison.

chess Chess End-Game — King+Rook versus King+Pawn on a7 (usually abbreviated KRKPA7).
The pawn on a7 means it is one square away from queening. It is the King+Rook’s

side (white) to move.

cleve Cleveland heart disease database. Eight attributes are symbolic, six numeric. There
are two classes: healthy (buff) or with heart-disease (sick). The attributes are: age,
sex, chest pain type (angina, abnang, notang, asympt), resting blood pressure, serum
cholesterol in mg/dl, fasting blood sugar120 mg/dl (true or false), resting ECG
(norm, abnormal, hyper), max heart rate, exercise induced angina (true or false),
oldpeak = ST depression induced by exercise relative to rest, the slope of the peak
exercise ST segment (up, flat, down), number of major vessels (0-3) colored by fluo-

roscopy, thallium (normal, fixed defect, reversible defect).

corral An artificial dataset designed to show that decision trees might pick a really bad

attribute for the root. The target conceptds xor as) or (a3 Xor ay), attributeAs is
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correlated to the class variable and attribdtas irrelevant.
crx Credit card applications data.
diabetes Pima Indians diabetes database.
flare Classification of solar flares.
german German credit database.
glass Glass identification database.

glass2 Variant of the glass identification database with two classes and corresponding cases

removed.

heart Another heart disease database. It has the structure simitéevtodatabase, the

same classes and attributes.
hepatitis Survival of hepatitis patients.

iris This is perhaps the best known database to be found in the pattern recognition liter-
ature. The data set contains 3 classes of 50 instances each, where each class refers
to a type of iris plant. One class is linearly separable from the other 2; the latter are

NOT linearly separable from each other.

letter The objective is to identify each of a large number of black-and-white rectangular
pixel displays as one of the 26 capital letters in the English alphabet. The character
images were based on 20 different fonts and each letter within these 20 fonts was

randomly distorted to produce a file of 20,000 unique stimuli.
lymphography Classification of lymphography data.

mofn-3-7-10 Artificial dataset: 10 bits; 3 out of 7 should be on; remaining three are irrel-

evant @A, As,Aq).
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pima Pima Indians diabetes database from the National Institute of Diabetes and Digestive

and Kidney Diseases.

satimage Landsat Satellite data: multi-spectral values of pixels in 3x3 neighborhoods in a
satellite image, and the classification associated with the central pixel in each neigh-

borhood.

segment Image segmentation database. The instances were drawn randomly from a database
of 7 outdoor images. The images were hand-segmented to create a classification for

every pixel.

shuttle-small The shuttle dataset contains 9 attributes all of which are numerical. Approx-

imately 80% of the data belongs to class 1.
soybean-large Soybean disease databases.

vehicle Vehicle silhouettes: 3D objects within a 2D image by application of an ensemble

of shape feature extractors to the 2D silhouettes of the objects.

vote Voting records drawn from the Congressional Quarterly Almanac, 98th Congress, 2nd

session 1984, Volume XL: Congressional Quarterly Inc. Washington, D.C., 1985.

waveform-21 Artificial dataset from waveform generator. Three classes of waveforms.
Each class is generated from a combination of 2 or 3 “base” waves. All 21 attributes

include noise.

8.4.2 Experiments

The results of experiments are presented in Tables 8.24 to 8.29. As before, a number in
bold indicates the lowest error for a given dataset in a particular table. Numbers with
gray background indicate lowest error rate among all classifiers tested for a given dataset.

Bottom of each table shows two performance indicators for each of the classifiers: an
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for the new Bayesian network classifiers.

Dataset | Constant c4.5 Naive TAN TAN-s | BestNew
Bayes BNC
australian 44.49 + 2.99( 15.07 + 0.81] 22.90 + 1.58[ 18.70 + 1.10{ 15.80 = 1.24] 11.74 + 1.15
breast 35.00 £ 2.95[ 5.13+ 0.96[ 3.96=+ 0.55| 4.25+ 1.25| 3.08=+ 0.67] 2.34+ 0.43
chess 46.81 + 1.53| 0.47 % 0.21| 12.85+ 1.03| 7.60+ 0.81| 7.69+ 0.82] 4.03+ 0.60
cleve 45.93 + 2.63| 28.38 + 1.83| 18.57 + 2.55| 20.94 + 0.65| 18.24 + 0.33] 16.20 + 1.33
corral 43.63 + 4.07| 2.31+ 2.31| 14.12+ 3.25| 4.68+ 2.26] 3.94+ 2.51] 0.00= 0.00
crx 45.34+ 2.11| 14.08 + 1.21] 23.12+ 1.73| 16.23 + 1.34| 1424 + 1.16] 11.94 = 0.69
diabetes 34.88 £ 2.35[ 27.34 + 1.08| 25.00 + 1.77| 24.87 + 0.98| 24.48 + 1.16| 22.66 £+ 0.68
flare 17.07 + 2.05| 17.45+ 1.75[ 19.04 + 1.44| 17.26 + 1.60| 17.73 + 1.86] 16.32 £ 1.52
german 30.00 £ 1.14| 28.70 + 0.93| 25.00 + 1.57| 27.80 + 1.54| 26.90 + 1.54| 24.90 £+ 0.90
glass 64.50 £ 1.05[ 34.13 + 3.54| 52.81 + 0.71| 30.82 + 2.64| 32.22 + 3.43| 20.42 + 1.09
glass2 46.69 + 2.72| 20.87 + 3.60| 40.55 + 2.83( 20.83 + 1.71 22.08 + 1.11] 17.80 = 2.26
heart 44.44 + 3.88| 21.48 + 3.13| 15.93 + 2.24| 17.04 + 2.51| 16.67 = 2.48] 14.81 + 2.11
hepatitis 16.25+ 3.19[ 18.75+ 1.98 8.75+ 2.50| 15.00 + 2.50[ 8.75+ 2.50] 6.25+ 2.80
iris 74.67 £ 1.33| 6.00+ 1.25| 4.67+ 1.33] 6.67% 1.05| 6.00+ 1.25] 4.67 £ 1.33
letter 96.30 = 0.27| 12.16 £ 0.46| 35.96 = 0.68| 16.56 = 0.53| 14.14 + 0.49] 12.78 + 0.47
lymphography | 45.20 £ 6.61| 22.97 + 0.59| 19.56 + 1.57| 33.13 = 3.37| 14.97 £ 3.09] 14.18 + 1.64
mofn-3-7-10 | 22.66 + 1.31| 16.02 + 1.15| 13.57+ 1.07| 8.30+ 0.86| 8.89+ 0.89] 6.25+ 0.76
pima 34.90 + 1.88| 26.18 + 2.05[ 23.97 + 1.61| 24.87 + 1.36] 24.48 + 1.27] 22.92 + 1.02
satimage 76.95 £+ 0.94| 14.35+ 0.78| 20.35 + 0.90| 22.45 + 0.93| 12.80 + 0.75| 12.60 £+ 0.74
segment 86.88 + 1.22| 5.84+ 0.85]20.65+ 1.46| 14.68 + 1.63| 442+ 0.74] 3.90 + 0.70
shuttle-small | 21.10+ 0.93| 0.57+ 0.17| 8.74+ 0.64| 1.14+ 024 047+ 0.15| 0.36+ 0.14
sovbean-large| 87.10 + 1.03| 7.82+ 1.15| 8.54+ 0.91| 41.83 + 1.43| 7.83+ 1.02] 6.22+ 1.28
vehicle 77.19 £ 0.39( 26.71 £ 0.85| 55.79 = 1.58| 32.14 = 2.92| 30.37 + 2.11] 28.95+ 2.29
vote 38.62+ 2.64| 4.14+ 0.46[ 9.66+ 0.86 10.80 + 1.61| 644+ 0.28] 3.22+ 0.76
waveform-21 | 66.26 = 0.69| 29.30 + 0.66| 19.32 + 0.58| 24.62 + 0.63| 21.62 + 0.60] 21.04 + 0.59
Average error 4971 16.25 20.94 18.53 14.57 13.51
Av. advantage 0.00 58.84 5271 57.43 64.80 67.70
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Table 8.25:Benchmarks on UCI datasets: five-fold cross-validation error rate for FAN

classifier.
Dataset FAN
HGC SB___ LC LOO CV1010

australian 12.46 + 0.84 12.32 £ 0.76] 12.46 + 0.42| 12.61 + 0.54]| 12.61 + 0.54
breast 249+ 0.18| 2.34+ 0.43] 2.78+ 0.43| 2.78+ 0.43| 2.78 + 0.43
chess 7.324+ 0.80] 7.41+ 0.80] 6.75% 0.77| 6.75+ 0.77| 6.75+ 0.77
cleve 16.55 + 1.64| 18.58 + 1.92| 16.89 + 2.20| 18.24 + 1.12] 17.90 + 1.14
corral 1.60+ 1.60] 0.00% 0.00] 1.60+ 1.60[ 1.60+ 1.60[ 1.60+ 1.60
crx 13.17 £ 0.92| 13.01 = 0.62] 13.48 = 0.70| 13.48 + 0.70| 13.48 £ 0.70
diabetes 23.18 4+ 0.59] 24.09 + 0.61] 22.91 + 0.77] 23.05 + 0.52| 23.31 + 0.64
flare 17.16 + 1.68] 17.26 = 1.84| 17.16 + 1.68]| 17.16 + 1.68| 16.78 + 1.58
german 25.40 + 1.10] 25.40 £ 1.26| 24.90 = 0.90| 25.00 £ 1.05( 25.00 = 1.05
glass 27.55+ 1.27[28.49 + 0.78] 27.08 = 1.65| 27.55 + 1.27| 27.55 + 1.27
glass2 19.66 + 1.89| 19.64 + 1.57] 18.45+ 2.03| 17.82 + 1.85| 17.82 + 1.85
heart 16.67 = 2.48] 17.04 = 2.51| 16.67 + 2.48]| 16.67 + 3.04| 16.67 £ 3.04
hepatitis 8.75+ 1.53] 10.00 + 1.53] 8.75+ 2.50] 7.50+ 2.34| 7.50+ 2.34
iris 533+ 1.33| 5.33+ 1.33] 5.33+ 1.33] 5.33+ 1.33| 5.33+ 1.33
letter 13.30 £ 0.48] 23.06 = 0.60] 16.42 + 0.52| 13.22 + 0.48| 13.30 + 0.48
lymphography | 14.21 £+ 1.98] 14.90 + 2.33| 14.87 + 1.36| 14.18 + 1.64| 14.18 + 1.64
mofn-3-7-10 9.47 + 0.92| 12.50 + 1.03] 8.50+ 0.87[ 8.11+ 0.85| 8.11= 0.85
pima 24.22 + 1.40| 24.62 + 1.60| 25.01 =+ 1.65]| 24.22 + 1.40| 24.48 + 1.69
satimage 12.60 £ 0.74| 13.10 = 0.76] 12.60 £ 0.74| 12.60 + 0.74] 12.60 + 0.74
segment 5.84+ 0.85| 7.40+ 0.94] 6.23+ 0.87| 597+ 0.85] 5.97+ 0.86
shuttle-small 0.41 £ 0.15| 0.36 + 0.14] 0.36+ 0.14 0.36+ 0.14] 0.36 = 0.14
soybean-large| 6.76 £ 0.99| 6.76 = 0.99] 8.18+ 0.51| 8.72+ 1.10] 8.36+ 0.36
vehicle 30.14 + 2.79| 29.54 + 3.13] 30.14 + 2.79( 30.61 + 3.19] 31.08 + 3.31
vote 5.75+ 0.51] 5.75+ 0.36] 5.52+ 0.43| 5.75+ 0.51] 5.75+ 0.51
waveform-21 | 21.04 £ 0.59| 21.26 + 0.60f 21.13 = 0.60| 21.04 + 0.59] 21.23 = 0.60
Average error 13.64 1441 13.77 13.61 13.62

Av. advantage 66.82 65.19 66.85 67.32 67.36
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Table 8.26:Benchmarks on UCI datasets: five-fold cross-validation error rate for STAN

classifier.
Dataset STAN

HGC SB LC LOO Cv1010 |
australian 13.48 + 1.37| 14.49 + 1.39] 12.75 + 0.43[ 12.75 £ 0.78] 12.75 %+ 0.78
breast 2.78 + 0.43| 3.37+ 0.86] 3.08+ 0.71] 3.08+ 0.71| 3.08 + 0.71
chess 6.47+ 0.75| 7.04+ 0.78] 4.32 £ 0.62| 4.32+ 0.62| 4.32+ 0.62
cleve 17.56 + 1.54| 18.58 + 1.05| 18.23 + 1.31]| 17.23 4+ 1.65| 17.57 + 0.44
corral 3.96 £ 1.79] 3.91 % 2.46] 4.71+ 2.88] 4.71+ 2.88] 4.71+ 2.88
crx 13.32 £ 0.70] 12.71 = 0.84] 13.02 + 0.80| 13.32 + 1.18] 13.01 £ 0.75
diabetes 22.92 + 0.68] 25.13 + 0.97| 23.18 + 0.51] 22.92 + 0.68| 22.92 + 0.68
flare 17.07 £ 2.05| 16.70 = 1.83] 16.60 = 1.96| 17.07 + 2.05| 17.07 = 1.80
german 26.20 + 0.86] 26.70 £ 0.58| 25.70 + 1.28] 25.60 £ 1.07| 25.40 =+ 1.33
glass 27.55+ 1.27|43.43 £ 2.62( 27.09 + 1.51| 27.09 + 1.51| 27.09 = 1.51
glass2 20.27 = 2.10] 21.50 £+ 2.40] 20.27 + 2.10] 20.27 + 2.10{ 20.27 + 2.10
heart 17.04 £ 2.51| 17.04 = 2.51] 16.30 + 1.98| 18.15+ 3.23| 17.04 + 2.51
hepatitis 7.50 £ 1.25] 12.50 + 0.00] 6.25+ 0.00[ 6.25+ 2.80] 6.25+ 2.80
iris 6.00 = 1.25| 6.00+ 1.25| 6.00 + 1.25| 5.33+ 1.33[ 6.00+ 1.25
letter 13.24 + 0.48 46.98 + 0.71] 13.22 + 0.48| 13.70 + 0.47| 13.70 + 0.47
lymphography | 14.92 + 2.37| 31.17 + 4.07] 16.94 + 1.65| 16.21 + 1.97| 16.21 + 1.97
mofn-3-7-10 7.03+ 0.80] 6.25+ 0.76] 7.03+ 0.80[ 6.25+ 0.76] 6.25% 0.76
pima 24.61 + 2.12| 26.17 £ 0.66| 24.22 + 0.87| 24.35+ 1.34( 2435+ 1.34
satimage 12.60 £ 0.74| 16.75 + 0.84] 15.50 + 0.81| 14.90 + 0.80| 14.85 % 0.80
segment 4.68+ 0.76 20.78 + 1.46| 4.42+ 0.74]| 4.81+ 0.77 4.81x 0.77
shuttle-small 0.41+ 0.15| 523+ 0.52] 0.47=+ 0.15 0.41+ 0.15| 0.41= 0.15
soybean-large| 9.25+ 1.07| 36.29 + 2.45] 8.00+ 1.19( 7.11+ 0.73] 6.94< 0.75
vehicle 31.67 £ 2.06| 34.51 + 1.33] 28.95 + 2.29( 29.66 + 2.53| 29.90 + 2.45
vote 4.60+ 0.51| 5.52+ 0.67| 4.37+ 0.43| 3.68+ 0.76/ 3.68 % 0.76
waveform-21 | 21.15+ 0.60( 21.15 £ 0.60| 21.15 % 0.60| 21.15% 0.60| 21.15 % 0.60
Average error 13.85 19.20 13.67 13.61 13.59
Av. advantage 66.88 57.86 6749 67.62 67.70
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five-fold cross-validation error rate for

STAND classifier.
Dataset STAND
HGC SB LC LOO Ccv1010

australian 13.33 + 1.56| 14.20 + 1.04] 12.61 + 1.31| 11.74 £ 1.15]| 11.74 = 1.15
breast 2.93+ 0.33] 2.64+ 0.38] 2.64% 0.38) 3.66=+ 0.61| 3.22+ 0.60
chess 7.41 £ 0.80] 7.41+ 0.80] 4.13+ 0.61| 4.03+ 0.60] 4.13+ 0.61
cleve 16.89 £ 0.49( 19.25 + 1.34| 17.90 + 0.82] 16.90 = 1.22] 17.92+ 1.40
corral 3.91+ 2.46| 3.91+ 2.46] 3.91% 2.46| 3.91+ 2.46/ 3.91= 2.46
crx 12.86 £ 1.00| 12.86 = 0.60] 12.56 + 0.62| 12.40 + 0.93| 12.40 = 0.93
diabetes 22.92 + 0.68| 23.31 + 0.71| 23.83 + 0.77| 23.83 + 0.77| 23.83 = 0.77
flare 16.32 = 1.52] 17.07 £ 2.05| 16.70 + 1.80| 17.07 £ 2.05| 17.07 £ 2.05
german 25.90 + 0.75] 27.90 £ 1.35| 26.20 + 0.82] 25.70 + 1.31| 26.00 = 1.21
glass 27.09 = 1.51]34.10 + 3.61| 28.95+ 1.48| 28.48 + 1.25( 28.02 + 1.17
glass2 20.23 + 2.79| 20.27 £+ 2.10| 20.27 £ 2.10] 20.27 £ 2.10[ 20.27 + 1.29
heart 16.67 £ 2.62| 17.04 + 2.51] 16.67 = 3.15[ 15.93 + 2.16| 15.56 + 2.08
hepatitis 7.50 £ 3.64] 10.00 + 2.50] 10.00 + 3.75[ 8.75+ 4.68| 8.75+ 4.68
iris 6.00 £ 1.25| 6.00 + 1.25| 6.00 + 1.25| 6.00+ 1.25[ 5.33+ 0.82
letter 13.50 £ 0.48 25.96 + 0.62] 16.50 = 0.52| 12.86 + 0.47| 12.86 = 0.47
lymphography | 16.23 + 1.32| 20.94 + 0.62] 17.58 + 1.31| 16.23 + 1.29| 16.94 + 3.95
mofn-3-7-10 7.03+ 0.80] 6.25+ 0.76] 7.03+ 0.80[ 6.25+ 0.76] 6.25% 0.76
pima 24.35+ 1.34] 23.70 £ 1.33] 23.96 + 1.09] 22.92 + 1.02| 23.44 + 0.87
satimage 12.60 £ 0.74| 12.60 = 0.74] 13.30 £ 0.76] 12.90 + 0.75] 12.90 £ 0.75
segment 545+ 0.82] 7.40+ 0.94] 4.55+ 0.75] 3.90% 0.70] 3.90+ 0.70
shuttle-small 0.41+ 0.15] 0.47+ 0.15] 0.47+ 0.15| 047+ 0.15| 047= 0.15
soybean-large| 9.25+ 1.18( 19.02+ 3.13] 8.18 + 1.17| 6.93% 1.40] 6.93 <+ 0.85
vehicle 30.73 £ 2.47| 29.90 + 3.08] 30.25+ 1.60{ 29.43 + 1.95] 29.19 * 1.91
vote 5.52+ 0.23] 4.37+ 0.43] 4.14+ 0.59| 4.83+ 0.43] 3.45+ 0.51
waveform-21 | 21.15% 0.60| 21.15+ 0.60| 21.96 + 0.60| 22.30 + 0.61| 22.30 + 0.61
Average error 13.85 1551 14.01 13.51 13.47

Av. advantage 67.01 64.07 6632 67.36 67.40
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Table 8.28:Benchmarks on UCI datasets: five-fold cross-validation error rate for SFAN

classifier.
Dataset SFAN
HGC SB LC LOO CV1010

australian 13.48 + 1.56] 13.91 + 1.06{ 12.90 + 0.42( 12.90 £ 0.42| 12.75 £ 0.49
breast 2.34+ 0.43 2.34+ 0.43| 3.37+ 0.55| 337+ 0.68] 3.37+ 0.68
chess 6.47+ 0.75] 7.04+ 0.78| 4.50+ 0.64| 4.32+ 0.62] 4.58 + 0.64
cleve 17.21 4 2.31| 18.24 + 2.30| 17.21 + 1.59]| 18.24 + 0.96( 17.90 + 0.82
corral 2.40+ 2.40| 0.00+ 0.00] 1.60 + 1.60| 2.40+ 2.40[ 2.40+ 2.40
crx 13.02 + 0.68] 12.86 + 0.82| 13.01 + 0.62| 13.63 + 0.81| 13.63 + 0.81
diabetes 23.18 + 0.59] 23.30 + 0.49] 22.92 + 0.75| 23.31 + 0.70| 23.31 = 0.70
flare 17.70 £ 2.05] 16.98 + 2.14| 16.98 + 1.72| 16.98 + 1.80| 16.98 + 1.80
german 25.30 £ 1.55| 26.40 = 0.97] 25.30 + 0.25] 26.10 + 1.16| 25.70 + 1.37
glass 27.554 1.27] 20.42 £ 1.09| 28.02 + 1.38] 28.02 + 1.38| 28.02 + 1.38
glass2 20.27 £ 2.10| 18.43 £ 2.19] 18.43 + 2.19| 18.43 + 2.19| 18.43 % 2.19
heart 15.93 + 2.39| 14.81 = 2.11| 17.41 + 2.39| 18.15+ 3.01| 17.04 + 3.43
hepatitis 8.75+ 1.53] 10.00 + 1.53] 8.75+ 1.53| 6.25+ 2.80| 6.25+ 2.80
iris 5.33+ 1.33] 4.67+ 1.33| 5.33+ 1.33| 533+ 1.33] 5.33+ 1.33
letter 13.24 £ 0.48]| 24.76 £ 0.61| 16.50 = 0.53| 13.70+ 0.49] 13.70 = 0.49
lymphography | 17.59 + 1.99] 20.92 + 1.14] 18.28 + 0.99| 15.59 = 2.39| 16.21 + 1.97
mofn-3-7-10 7.81+ 0.84] 11.72 + 1.01] 7.03% 0.80| 7.81+ 0.84| 7.81+ 0.84
pima 24.87 £ 1.13] 24.61 + 1.08] 24.48 + 1.32| 24.35+ 1.31| 24.35+ 1.31
satimage 12.60 = 0.74| 16.75+ 0.84| 15.15+ 0.80| 16.30 + 0.82] 16.75+ 0.84
segment 4.68+ 0.76] 7.47+ 0.94| 5.19+ 0.80| 4.94+ 0.78] 7.14+ 0.93
shuttle-small 0.41 £+ 0.15] 5.43+ 0.52 0.36 = 0.14] 047+ 0.15] 047+ 0.15
soybean-large| 9.07+ 0.90f 9.60+ 1.76] 9.60 + 1.76| 6.22 % 1.28] 9.60 + 1.76
vehicle 32.85 £ 2.55| 34.04 + 1.26] 29.30  2.63| 30.13 + 2.43| 29.90 £ 2.79
vote 4.69+ 0.63] 5.06=+ 0.46| 4.14+ 0.86] 3.22+ 0.76] 3.22 % 0.76
waveform-21 | 21.15+ 0.60] 21.13 £ 0.60] 21.09 £ 0.60]| 21.15 £+ 0.60] 21.15 £ 0.60
Average error 13.92 14.84 13.87 13.65 13.84

Av. advantage 66.44 64.08 66.87 67.43 67.28
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SFAND classifier.
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five-fold cross-validation error rate for

Dataset SFAND
HGC SB LC LOO CV1010

australian 13.04 + 1.73] 13.77 = 1.15] 11.74 %+ 0.62| 11.88 + 0.99] 11.88 + 0.99
breast 2494 0.37| 2.34+ 0.43| 3.22+ 0.59| 3.66+ 0.61| 3.81+ 0.78
chess 7.41 £ 0.80] 7.41+ 0.80] 4.13+ 0.61| 4.03+ 0.60] 4.03 % 0.60
cleve 16.20 £ 1.33]| 18.58 + 1.84| 16.54 £ 1.42| 16.90 + 1.22]| 17.92 £ 1.40
corral 2.40+ 2.40( 0.00+ 0.00] 1.60+ 1.60] 1.60=+ 1.60[ 2.40+ 2.40
crx 13.01 £ 0.86| 13.17 + 0.98] 11.94 + 0.69| 12.70 + 1.06| 12.86 = 1.05
diabetes 23.18 + 0.51| 24.09 + 0.88] 22.66 = 0.68| 23.57 + 0.48| 23.57 + 0.48
flare 16.32 = 1.52] 17.07 &+ 2.05| 16.98 £ 1.66| 17.07 £ 2.05| 17.07 £ 2.05
german 25.50 = 1.44| 25.90 £ 1.22| 25.70 £ 1.15] 26.60 £ 1.64| 26.60 =+ 1.03
glass 27.09 = 1.51/28.49 + 0.78]| 28.48 + 1.25| 28.95 + 1.48| 28.95 + 1.48
glass2 20.23 + 2.02| 17.80 £+ 2.26| 18.43 + 2.19| 18.43 £ 2.19| 18.43 + 2.19
heart 17.04 £ 2.95] 17.04 = 2.51] 16.67 = 2.27| 15.56 + 2.24| 15.56 = 2.24
hepatitis 7.50 £ 1.25| 8.75+ 1.53| 8.75+ 3.19( 10.00 + 2.50[ 8.75+ 3.19
iris 5.33+ 1.33] 4.67% 1.33] 5.33+ 1.33] 533+ 1.33] 533+ 1.33
letter 13.30 £ 0.48] 22.92 + 0.59] 16.62 + 0.53| 12.86 + 0.47| 12.78 + 0.47
lymphography | 16.23 + 1.32] 17.61 + 1.40] 16.25 + 1.38| 15.59 + 1.48| 16.21 + 1.93
mofn-3-7-10 7.81+ 0.84f 11.72 + 1.01] 7.03+ 0.80[ 7.81+ 0.84| 7.81+ 0.84
pima 24.36 + 1.31] 23.96 + 1.43| 24.48 + 1.40| 23.57 + 0.96| 23.57 + 0.96
satimage 12.60 £ 0.74| 13.10 = 0.76] 13.30 £ 0.76| 12.90 + 0.75] 16.30 = 0.83
segment 571+ 0.84] 7.40+ 0.94] 5.32+ 0.81| 6.36+ 0.88] 6.36+ 0.88
shuttle-small 0.41 £ 0.15| 0.41 % 0.15] 0.52+ 0.16] 0.36+ 0.14] 0.36 = 0.14
soybean-large| 8.89+ 0.88 9.78+ 1.81] 7.65+ 0.82 6.40% 0.94] 6.40 £ 0.94
vehicle 30.14 + 2.79| 29.54 £ 3.13] 29.90 + 1.67| 30.02 + 1.46| 29.54 = 1.59
vote 5.52+ 0.43] 5.98+ 0.43] 3.68+ 0.76] 4.37+ 0.43| 437+ 043
waveform-21 | 21.15 % 0.60| 21.32 = 0.60] 21.34 + 0.60]| 22.17 + 0.61| 22.17 + 0.61
Average error 13.71 14.51 13.53 13.55 13.72

Av. advantage 67.20 6532 67.51 66.99 66.90
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average error rate (lower is better) and an average advantage ratio (higher is better). The
advantage ratio compares performance of a classifier to the constant classifier and is given
by Eqg. (8.1).

Table 8.24 contains summary of the classification results. CollTANAFGG contains
results published by Friedman et al. (1997) for a TAN classifier that does not use Dirichlet
priors. Acronym FGG stands for the first names of the authors of the TAN classifier:
Friedman, Geiger, and Goldszmidt. ColumAN-FGG-S contains results published by
Friedman et al. (1997) for a TAN classifier that uses Dirichlet priors (smoothing); all of the

o, parameters were set to be the same and equal 5.

8.4.3 Discussion of the Results

We have selected three new classifiers, each using different search algorithm, and compared
them graphically to the reference classifiers. The reference classifier used for comparison
are C4.5, nive Bayes, TAN-FGG, and TAN-FGG-S classifier. The new classifiers used
for graphical comparison are FAN-LOO, STAND-LOO, and SFAND-LC, presented in fig-
ures 8.4, 8.5, and 8.6, respectively. As before, axis in each diagram represent percentage
error rate. The pink diagonal line represents equality of error for the two compared classi-
fiers. A blue mark represents a dataset. When a blue mark is above the line it means that
a reference classifier compared to a new classifier had larger error for that dataset. When a

mark is below the diagonal pink line it means that the new classifier had larger error.

Overall Performance of the New Bayesian Network Classifiers

Fig. 8.7 shows average error rate and average advantage ratio of the new classifiers com-
pared to the two best reference classifiers, TAN-FGG-S and C4.5. Notice, that only in
some cases when new algorithms are combined with Standard Bayesian measure (SB) they
perform equal or worse than the reference classifiers. For all other quality measures and all

search algorithms the performance is better than that of the reference classifiers.
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Figure 8.4:Comparison of FAN-LOO inducer versus C4.5veBayes, TAN-FGG, and

TAN-FGG-S inducers on datasets from UCI Machine Learning Repository.
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(c) STAND-LOO versus TAN-FGG classifier. (d) STAND-LOO versus TAN-FGG-S classifier.

Figure 8.5:Comparison of STAND-LOO inducer versus C4.5|veaBayes, TAN-FGG,
and TAN-FGG-S inducers on datasets from UCI Machine Learning Reposi-

tory.
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Figure 8.6:Comparison of SFAND-LC inducer versus C4.5jveaBayes, TAN-FGG,

and TAN-FGG-S inducers on datasets from UCI Machine Learning Reposi-

tory.
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Figure 8.7:Benchmarks on UCI datasets: Average error rate and average advantage ratio
for the new classifiers and for best reference classifiers: TAN-FGG-S and

C4.5.

To quantitatively compare the performance of the new family of Bayesian network
classifiers to the reference classifiers (the constant classifier, C&é Bayes, TAN-FGG,
and TAN-FGG-S) we used approach similar to the one presented in Section 8.2. We used

the same three indicators:

Dataset error rate indicates for how many datasets the error rate of the best new Bayesian
network classifier was better (lower), equal to, or worse (higher) than that of the best

reference classifier for a given dataset.

Average error rate indicates how many of the new Bayesian network classifiers had av-
erage error rate that is better (lower), equal to, or worse (higher) than that of the best

(lowest) average error rate of the reference classifiers.

Average advantage ratio indicates how many of the new Bayesian network classifiers had
average advantage ratio, Eq.( 8.1), that is better (higher), equal to, or worse (lower)

than that of the best (highest) average advantage ratio of the reference classifiers.
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Table 8.30:Comparison of the new family of Bayesian network classifiers to reference
classifier (the constant classifier, C4.5jwveaBayes, TAN-FGG, and TAN-
FGG-S) using datasets from UCI Machine Learning Repository. A number
indicates how many times the best of the new classifiers was better, equal, or

worse than the best of reference classifiers.

Indicator Better Equal Worse
Dataset error rate 20 80% | 1 4% 4 16%
Average error rate 21 84% | O 0% 4 16%

Average advantage ratio 22 88% | O 0% 3 12%

The indicators are shown in Table 8.30. The table demonstrates that the new family of
Bayesian network algorithms produces classifiers that are performing significantly better
than the reference classifiers in a variety of domains. Notice, that if we excluded classifier
using Standard Bayesian quality measure (SB) the average error rate and average advantage

ratio for new classifiers would always be better (100%) than the reference classifiers.



Chapter 9

Conclusions and Suggestions for Future

Research

In this dissertation, we dealt with the issues of automating cardiac SPECT image interpreta-
tion: creation of a database of training cases, processing of 3D SPECT images and feature
extraction, and use of a new family of Bayesian network classifiers for learning diagnosis

of left ventricular perfusion.

9.1 Summary of the Results

In chapter 3 we discussed the process of knowledge discovery in databases. Creation of the
new cardiac SPECT database has been described there. It discussed database organization
and initial cleaning of data.

In chapter 4 we discussed process of inspecting cardiac SPECT images performed by
a cardiologist. Then we used it as an inspiration for feature extraction process based on
building a model of normal left ventricle.

In chapter 7 we introduced a new synthesis of Bayesian network classifiers and pre-

sented five new search algorithms created that were using this synthesis. It also demon-
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strated that ri@e Bayes and TAN classifier are special cases of the synthesis.

In chapter 8 we presented empirical evaluation of the new family of algorithms. It was
demonstrated that the new classifiers are able to deal better than existing algorithms with
the high level of noise present in the cardiac SPECT data and features extracted from 3D
SPECT images. It was also shown that the new algorithms outperform existing ones on

datasets from UCI Machine Learning Repository.

9.2 Suggestions for Future Research

e Creation of a larger database that would contain statistically significant number of

examples for each diagnosed left ventricular perfusion defect.

e Use of information about motion of the left ventricle (gated-pool cardiac SPECT)

and use of physics-based deformable models.

e Consider improved system for recording the information at a hospital about diag-

nosed cases.

e New quality measures for scoring the Bayesian networks for classifiers, for instance,

a variant of the LC measure with a penalty for the network size.

e Heuristics for adjustments of network parameter priors based on information about a

training dataset.

9.3 Concluding Remarks

The most significant contribution of this research was the introduction of the new family
of Bayesian network classifiers. High performance of these classifiers was demonstrated,
not only on cardiac SPECT data, but also on data from a variety of domains using UCI

Machine Learning datasets.
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Unfortunate conclusion of this research was that the number of available cardiac SPECT
imaging cases was not sufficiently large to reliably classify left ventricular perfusion, and
that a significantly larger number needs to be collected before attempting practical applica-

tions.
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Appendix A

Database, Visualization, and Feature

Extraction Software

A.1 Database

The original data, containing patient information and cardiologist's evaluation of SPECT
images, was recorded at Medical College of Ohio (MCO) in an MS Excel spreadsheet. Thus
natural choice for the database software was MS Access. The spreadsheet was converted
into a single table with the same format to allow easy addition of new patient records as they
became available. The records in the table were indexed using combination: the SPECT
study date and the patient hospital number.

The MS Access database, however, was used only as the main repository and for manual
operation on data. Automated operations on data from non-Microsoft software proven to
be very unreliable, despite that, over time, we went through a number of updates of Access
drivers from Microsoft. Thus, for automated operation the required portion of data were

converted to Paradox database format, maintaining the same structure of the data.

161



162

A.1.1 Cardiac SPECT Images

The cardiac SPECT images obtained from MCO were stored in a proprietary format. We
reverse-engineered the format to the extent that allow as reading on image data and patient
identification data stored with images. A C++ class library for manipulation of cardiac
SPECT images has been created.

The images were stored at MCO one patient case per directory. The directory typically
contained preprocessed 3D SPECT images, additional patient information related to image
creation, and in some cases the original unprocessed projection data (data form SPECT
camera before 3D reconstruction through back-projections). There were typically six 3D
SPECT images per directory: short axis view, horizontal long axis view, and vertical long
axis view for rest and stress study.

We maintained the case-per-directory organization. We decided to keep the actual im-
age data outside of the database (did not included them into tables). We renamed each
image directory using combination of SPECT data and patients’ hospital number. The
directories were grouped by year and month. Having this organization, it was easy to
automatically locate images knowing SPECT date and hospital number. Additionally, to
optimize SQL queries, we added to the database a table containing list of all available
images. The table had two fields SPECT date and patients’ hospital number. The image
data were quite large, over 3GB. To conserve space, each image file was individually com-
pressed using, freely availablgip utility. We decided to usgzip format since it provides
good compression and since C++ libraries for compression/uncompresgaip format
are freely available. After compression images unoccupied less then 0.7GB.

There were more than 8,000 image files. We have created, using Borland C++Builder,
a number of fully automated software utilities for maintenance of the images. These in-

cluded:

o \erification whether files in an image directory correspond to a single case.
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e Renaming of the directories, based on information read from images, to comply with

convention described above (SPECT date, hospital number)

e Automated creation of image indexes in the database or verification that information

in existing indexes is correct.

A.1.2 Other Structures in the Database

The database contained almost any information generated during model building, feature

extraction, and classification stored. Each information type was stored in dedicated tables:

e Information about created models of normal left ventricle.

Transformation needed to register each of the SPECT images to corresponding model

of normal left ventricle and the quality of correlation.

A number of tables corresponding to various feature extraction experiments. The

final experiments were reported in Chapter 8.

Datasets generated from SPECT data used for experiments described in Chapter 8.

Results of experiments described in Chapter 8.

A.2 Visualization

A.2.1 SPECT Image Browser

As described in Chapter 3, the first two steps of a knowledge discovery process is under-
standing the problem domain and understanding the data. One of the first software applica-
tions we created was for visualization of the 3D SPECT images. This tool is called SPECT
Image Browser. Itis shown in Fig. A.1. The tool displays, side by side, a slice of a SPECT

image and a 3D rendering of image iso-surface. SPECT date and patient number contained
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Figure A.1:SPECT Image Browser — a tool for visualization of 3D SPECT images.

in the image is also displayed. User can specify iso-surface level (threshold level) or it can
be determined automatically. User has an option to display the threshold level overlayed
on the slice image. It is shown in Fig. A.1 with a red line. The tool can automatically con-
vert between axis views (short axis, horizontal long axis, vertical long axis). Image slices
can be extracted to individual files. The 3D image can be converted to TIFF stack format.
The 3D rendering can be saved in VRML (Virtual Reality Markup Language) and can be
then displayed with a number of VRML viewers or Internet browsers. We have used the
Visualization Toolkit (VTK) library for 3D rendering (Schroeder et al., 1998). The SPECT

Image Browser was designed for inspection of individual 3D SPECT images.
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Figure A.2:Patient data display window of the SPECT database browser.
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Figure A.3:Main image display window of the SPECT database browser.
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Figure A.4:Slice display windows of the SPECT database browser.

A.2.2 SPECT Database Browser

We have created another tool called SPECT Database Browser to enable visualization of
most important patient information together with corresponding 3D SPECT images. The

information is presented to the user in a number of windows that can be opened or closed
as needed. The main window displays textual patient information, see Fig. A.2. The image
display window shows SPECT images corresponding to case displayed in the main window.
Both, rest and stress, images are shown together. The window displays all available axis
views and 3D renderings based on short axis views, see Fig. A.3. For each of axis views,

the user can open a window showing slices is row format, see Fig. A.4.

A.3 Model Building and Feature Extraction

We have created a C++ class library that implements 3D image registration, model cre-
ation, and feature extraction procedures described in Chapter 4. The library also includes

all necessary database communication classes. A simple user interface, created in Borland
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C++Builder, allows interaction with the library. The interface allows for automatic pro-
cessing of a number of selected images by customizing appropriate SQL queries executed

by the software.

A.4 Creation of Datasets for Classifier Learning

The datasets based on feature extraction were automatically created by software described
in previous section. Datasets for the first experiment described in Chapter 8 were created
by manual execution of SQL queries in MS Access; since all the data needed were already

present in the database.



Appendix B

BNC: Bayesian Network Classifiers

Toolbox

The software for learning Bayesian network classifier (BNC) has been implemented inde-
pendently for the SPECT database, visualization, and feature extraction software described
in Appendix A. The intention was to make it convenient to use BNC for classification in
other domains.

We decided to implement BNC in Java programming language to ensure easy porta-
bility to various operating systems. We used Java 2 and tested the software under MS
Windows NT, MS Windows 95/98, Linux, and Solaris operating systems. Although, not
tested, the software should run on any other operating systems capable of running Java 2.

The main part of BNC is a class library implementing all of the new Bayesian network
classifier learning algorithms described in Chapter yen8ayes (Duda and Hart, 1973),
and TAN (Friedman et al., 1997).

BNC provides command line interface to the library. Command line interface allows
for easy running of multiple learning algorithms on number of datasets. An example of
Bourne Shell script that was used to test UCI datasets using five-fold cross validation, see

Section 8.4, is presented in Fig. B.1. This single script executed the @bKsVal utility
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#!/bin/sh

DATASETS="australian breast cleve crx diabetes german glass\
glass2 heart iris pima soybean-large vehicle vote"

ALGOR="fan stan stand sfan sfand"
QM="HGC SB LC LOO CV1010"

for d in $DATASETS; do
for a in $ALGOR; do
for g in $QM; do
java Crossval -f cv5/$d -a $a -g $q -s 9 -| UCI;
done;
done;
done

Figure B.1:Bourne Shell script that was used to test all 25 new Bayesian network classi-
fiers on 14 UCI datasets using five-fold cross validation. The script executes
350 cross validation tests. The results are automatically logged to a database

table named UCI.

350 times.

B.1 BNC Utilities

Command line interface to BNC class library consists of three utiliti#¥sssifier, Cross-

Val, andDatasetInfo. They are described in following sections.

B.1.1 Classifier and CrossVal Utilities

Classifier utility is used to learn and test a Bayesian network classifieossVal utility
performs a cross-validation test of a Bayesian network classifier, it assumes that cross val-
idation datasets are already generated and attempts to read them using given file stem. The
file name format idilestemrepetitionfold. For instance for file stemote the file names

could bevote-0-0.* |, vote-0-1.* |, etc. TheGenCVFiles utility from MLC++ li-
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brary (Kohavi et al., 1997) can be used for generation of cross validation files. It generates
cross validation file names in the format described above. Bu#issifier and CrossVal

utilities accept the same command line options:

-aalgor_.name Bayesian network classifier algorithm choicestive (for nave Bayes),

TAN, FAN, STAN, STAND, SFAN, SFAND.
-c classname Name of the class variable. The default valuelass.
-d Print debugging information.

-f filestem Load test data in C4.5 forman@mes + .data + .test ). ForClassifier the
files will be: filestemnames - file with specification of attributedilestemdata
— file with training cases, anfilestemtest — file with test cases. FaZrossVal
the file names will bdilestem?-?.names , filestem?-?.data , andfilestem?-

? test

-| table-name Log result to database takigble-namelt is assumed that results are logged

to a database with ODBC nantest.

-n filename Save constructed network(s) filenamebif . File is saved in BIF 0.15 for-

mat.

-g quality-measureBayesian network quality measure choices: HGC — Heckerman-Geiger-
Chickering, SB —Standard Bayesian, LC — Local criterion, LOO — leave-one-out
cross validation, CV10 —ten-fold cross validation, CV1010 — ten-fold ten-times cross

validation.

-snumber Number of smoothing priors to test; has to be an integer greater or equal to

Zero.

-t Print execution time in milliseconds.
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Classifier tester

File stem: vote
Algotithm: FAN
Quality measure: Leave-one-out cross validation

Error = 5.926% +- 2.04% (94.074%) [127/8/135]

Figure B.2:Sample output o€lassifier utility.

For example, to test FAN classifier using LOO quality measure on datatsdollow-
ing command line can be used:
java Classifier -a FAN -g LOO -f vote
An example ofClassifier output is shown in Fig. B.2. Number afte¥ is an estimate of
the standard deviation according to binomial model. The number in parenthesis is accu-
racy (100%-error), the numbers in square brackets are: number of correct classifications,

number of false classifications, and total number of cases in test set, respectively.

B.1.2 Datasetinfo Utility

The Datasetlnfo utility is used to print information about a dataset. It takes a single at-
tribute: the file name stem. It assumes that the file is saved in C4.5 fobagdsetinfo

prints information about number of classes and number of attributes in the dataset (defined
in file filestemnames ). It also prints frequency of each of the classes in train and test

datasets. A sample output Datasetinfo utility is shown in Fig. B.3.
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Datasetinfo

Filestem: ../db/vote
Number of classes =2
Number of attributes = 16

File '../db/vote.all’ has 435 cases.
democrat : 267 [61.38%)]
republican : 168 [38.62%)]

File '../db/vote.data’ has 300 cases.
democrat : 184 [61.33%]
republican : 116 [38.67%]

File '../db/vote.test’ has 135 cases.
democrat : 83 [61.48%]
republican : 52 [38.52%)]

Figure B.3:Sample output obatasetinfo utility.



