|
jBNC Toolbox | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectjbnc.Classifier
jbnc.CrossVal
Cross validation classifier tester. Assumes that cross validation files are already generated an attempts to read them using given file stem. The file name format is: "stem-repetition-fold". For instance for stem "monk" the file names could be "monk-0-0.*", "monk-0-1.*", etc.
USAGE: CrossVal {options}
where:
-a {algor_name} Algorithm choices: "naive", "TAN", "FAN", "STAN", "STAND".
-c {class_name} Name of the class variable. The default value is 'class'.
-d Print debugging information.
-f {file_stem} Load test data in C4.5 format (.names + .test),
file_stem-?-?.names - file with specification of attributes,
file_stem-?-?.data - file with train cases.
file_stem-?-?.test - file with test cases.
-n {file_name} Save constructed naive-Bayes networks to file_name-?-?.bif.
File is saved in BIF 0.15 format.
-q {q_measure} Select quality mesure. This relevant for the inducers that
perform selection of network candidates, like FAN or STAN.
Diffrent measure have drasticaly diffrent computational
complexity.
Quality measures choices:
LC - local criterion: log p(c_l|D) [local]
SB - standard Bayesian measure with penalty for size
[global].
HGS - Heckerman-Geiger-Chickering measure [global].
LOO - leave-one-out cross validation [local].
CV10 - ten fold cross validation.[local].
CV1010 - ten fold cross validation averaged ten times
[local].
-s Number of smoothing priors to test. Has to be an integer
greater or equal zero.
-t Print execution time.
EXAMPLE: CrossVal -a TAN -tf monk1
EXAMPLE: CrossVal -dta FAN -q LOO -f monk1
| Field Summary |
| Fields inherited from class jbnc.Classifier |
algorithmName, className, classNameDefault, databaseURL, debugMode, fileNameStem, measureName, namesFileName, nbAlphas, netFileName, tableName, testFileName, trainFileName, usageMsg, useTimer |
| Constructor Summary | |
CrossVal()
|
|
| Method Summary | |
protected DatasetInt |
loadDataset(java.lang.String namesFile,
java.lang.String dataFile)
Dataset loading wrapper. |
static void |
main(java.lang.String[] args)
Main function. |
protected void |
run()
Create and test a classifier. |
protected void |
run(java.lang.String[] args)
|
protected BNCTester.Result |
test(BayesianNetworks.BayesNet net,
DatasetInt testSet,
boolean report)
Bayesian network classifier testing wrapper. |
protected BayesianNetworks.BayesNet |
train(BayesianInducer inducer,
FrequencyCalc fc,
boolean usePriors,
double alphaK)
Bayesian network classifier training wrapper. |
| Methods inherited from class jbnc.Classifier |
processCommandLine, setUsageMsg |
| Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
public CrossVal()
| Method Detail |
protected void run(java.lang.String[] args)
run in class Classifierpublic static void main(java.lang.String[] args)
args - The command line arguments
protected BayesianNetworks.BayesNet train(BayesianInducer inducer,
FrequencyCalc fc,
boolean usePriors,
double alphaK)
throws java.lang.Exception
inducer - algorithm used for classifier learning.fc - Description of ParameterusePriors - Description of ParameteralphaK - Description of Parameter
java.lang.Exception - Description of Exception
protected BNCTester.Result test(BayesianNetworks.BayesNet net,
DatasetInt testSet,
boolean report)
throws java.lang.Exception
net - Bayesian network classifier.testSet - test data.report - wether to report results on the screen.
java.lang.Exception - Description of Exceptionprotected void run()
Classifier
run in class Classifier
protected DatasetInt loadDataset(java.lang.String namesFile,
java.lang.String dataFile)
throws java.lang.Exception
loadDataset in class ClassifiernamesFile - Description of ParameterdataFile - Description of Parameter
java.lang.Exception - Description of Exception
|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||